
Automated Task Load Detection with Electroencephalography:

Towards Passive Brain-Computer Interfacing in Robotic

Surgery

Thorsten O. Zander, Kunal Shetty, Romy Lorenz, Daniel R. Leff,
Laurens R. Krol, Ara W. Darzi, Klaus Gramann, Guang-Zhong Yang

Abstract

Automatic detection of the current task load of a surgeon in the theatre in real time could
provide helpful information, to be used in supportive systems. For example, such information
may enable the system to automatically support the surgeon when critical or stressful periods
are detected, or to communicate to others when a surgeon is engaged in a complex manoeuvre
and should not be disturbed. Passive brain-computer interfaces infer changes in cognitive and
affective state by monitoring and interpreting ongoing brain activity recorded via an electroen-
cephalogram. The resulting information can then be used to automatically adapt a technological
system to the human user. So far, passive brain-computer interfaces have mostly been investigat-
ed in laboratory settings, even though they are intended to be applied in real world settings. In
this study, a passive brain-computer interface was used to assess changes in task load of skilled
surgeons performing both simple and complex surgical training tasks. Results indicate that the
introduced methodology can reliably and continuously detect changes in task load in this realistic
environment.

1 Introduction

The last thirty years have witnessed a radical
transformation in the operative environment with
the introduction of Minimally Invasive Surgery
(MIS), propelled by patient demand, smaller op-
erative incisions and faster recovery. However,
surgeons take significantly longer to reach profi-
ciency in MIS1 and find it cognitively more bur-
densome compared to traditional open operative
procedures.2 For example, open hand knot ty-
ing (OHKT), a routinely performed surgical ma-
noeuvre, is far less challenging than knot tying
performed in minimally invasive surgery (MISK-
T), and an inability to perform MISKT efficiently
limits the surgeon from performing advanced MIS
procedures.3 This is attributed to poorer instru-
ment ergonomics such as the loss of depth per-
ception, reduced degrees of freedom of movement,
amplification of tremors from using long instru-
ments, a lack of tactile feedback, and paradoxical
movements as a result of the fulcrum effect.2 Ad-
ditionally, the influx of new technology that sup-
ports MIS necessitates the operators’ vigilance to

attend to auditory alarms that alerts the surgeon
to a faulty technical device or declining status of
the monitored patient. If an alarm suggesting fail-
ure of a device is undetected, it may cause poten-
tial harm to the patient.

Surgeons are unique amongst doctors because
they are often required to make decisions based on
the presentation of the real-time problem whilst
operating, and therefore should not just pos-
sess the technical capability but also the cogni-
tive resources to deal with unanticipated scenar-
ios.4 Moreover whilst operating, surgeons on av-
erage are interrupted 13.5 times5 and at times
these interruptions warrant immediate decisions
on management of a critically unwell patient out-
side the theatre. The impact of such secondary
tasks (decision-making, detection of sensory stim-
uli) has been observed to degrade performance of
the primary task (technical performance) albeit
to a lesser extent in experts who have presumably
achieved automaticity.6–9

According to resource theory, humans have a
finite pool of resources that can be allocated or
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shared across tasks10 with the assumption that
the more challenging a task, the greater the re-
sources it consumes. Therefore, a cognitively chal-
lenging surgical task can not only impair situa-
tional awareness but also degrade optimal perfor-
mance, which ultimately could jeopardize patient
safety. To enhance surgical ergonomics with the
view of improving patient safety it is imperative
that we be able to characterize these variations
in cognitive demand, brought about by different
tasks or different contingencies during the same
task.

Compared to traditional cognitive state mea-
sures such as behavioural correlates11 or sub-
jective questionnaires such as the NASA Task
Load Index (NASA-TLX),12 the analysis of neural
mechanisms13 has a number of advantages. The
measurement can be done continuously and in real
time, i.e. in the very moment the relevant events
take place, and the measurement does not interfer-
e with the actual task. Also influences of memory,
e.g. primacy and recency effects, do not play a role
in such measurements. Most importantly howev-
er, measures of brain activity may provide more
detailed and fine-grained insights into the state
of the surgeon than traditional measures. Neural
correlates may be used to accurately identify cur-
rent tasks, but potentially also carry information
on e.g. task load, attention, and error detection.

Studying brain behaviour in surgeons enables
the impact of novel technologies on operators’ cog-
nitions to be assessed. Non-invasive neuroimag-
ing technologies such as electroencephalography
(EEG)14 and functional optical brain imaging
have previously been applied to assess technical
expertise,15 skills acquisition,15,16 cognitive bur-
den17 and fatigue.18 These technologies can be
applied to assess brain dynamics underlying cog-
nitive processes even in actively moving partici-
pants.19,20

Robotic MIS platforms can conceivably ac-
quire and learn, in situ, operator-specific motor
and cognitive behaviour through human-robot in-
teraction. This novel concept termed ‘perceptual
docking’21 can be realised from emerging multi-
modal sensing and feedback rather than one as-
pect of surgeon-robot interaction. Surgical robot-
ic platforms with tremor filtration capabilities,
image magnification and improved actuation of-
fer a high degree of surgical precision and may
offload a degree of cognitive burden placed on the

operator during MIS. Critically, analyses of oper-
ator brain function when synergized with online
learning algorithms may enable the robot to ben-
efit from human surgical intelligence and learn to
better assist the surgeon, preventing errors and
enhancing patient safety. Brain activity may pro-
vide an additional seamless communication chan-
nel between the surgeon and robot, and thus im-
prove the robot’s understanding of the cognitive
challenges faced by the operator. This secondary,
implicit interaction loop would provide valuable
information to the robot, without demanding ex-
tra cognitive load from the operator.22 Technolo-
gy that adapts to the users in this way based on
their brain activity can be termed neuroadaptive
technology, and the required form of communica-
tion between the brain and the machine can be
implemented using passive brain-computer inter-
face (BCI).23

In order to evaluate the potential value of pas-
sive BCI to robotic surgery we employed an EEG-
based BCI system to detect tasks and assess task
load over surrogate measures that have been em-
ployed in other studies.

Traditionally, BCI is defined as a non-
muscular communication and control channel for
people suffering from diseases that disrupt the
neural pathways through which the brain com-
municates with and controls its external environ-
ment.24 Brain activity associated with the us-
er’s intent is measured and translated in real time
into control signals for communication systems
or other external devices. A recent development
within the field of BCI broadens this general B-
CI approach by substituting the user’s volitionally
generated command (e.g. intentionally imagined
hand movements) with passively conveyed implic-
it information.23,25 Such a passive BCI derives
its input from brain activity arising without the
purpose of voluntary control, e.g. spontaneous ac-
tivity indicative of task-induced cognitive or af-
fective states.23,26 This activity reflects covert
aspects of the user’s state. Therefore, it carries
task-relevant information, and can thus be used
to goal-directedly enrich the human-machine in-
teraction without requiring any overt communica-
tion from the user.23 This extends the potential
field of application of BCI technology to include
users without disabilities25—users, for example,
in critical working environments where mental s-
tate measurements can provide tangible benefits.
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Indeed, passive BCIs have proven to be a valuable
tool for detecting cognitive load27 and working
memory load.28 These effects have been demon-
strated under laboratory conditions (e.g. Gevins
et al., 1998) as well as for more complex and natu-
ral tasks such as simulated driving (Brookhuis and
de Waard, 1993) or flight (Sterman and Mann,
1995; Sterman et al., 1994) (as cited elsewhere29).

The vast majority of these studies evaluate
spectral power differences in certain frequency
bands that have shown to be sensitive to differ-
ent cognitive load conditions. In particular, an
increase of frontal theta activity is observed while
parietal alpha power decreases as more cognitive
resources are allocated to the task.30–33 Hence,
we hypothesize that passive BCI can be used to
reliably differentiate between OHKT and MISKT,
and that during performance of technically chal-
lenging tasks (MISKT, dual-tasking) an increased
frontal theta activity with concurrent decreased
parietal alpha activity will be observed in the
EEG.

2 Methods

2.1 Participants

Nine participants were recruited from Imperial
College London after seeking consent and screen-
ing for neuropsychiatric illnesses. Participants
comprised of eight residents (PGY3-8) and one
attendee aged 32.2 ± 3.3 years (mean ± S.D.).
All participants underwent 15 minutes of manda-
tory practice for warm up of the relevant surgical
tasks.

2.2 Experimental Tasks and Condi-
tions

The primary task was to perform one set of OHK-
T and MISKT alone for a fixed period of 200
seconds. The OHKT task involved the forma-
tion of as many reef knots as possible within 200
seconds using suture material (2/0 Polysorb) on
a bench knot-tying trainer (Ethicon Ltd, Som-
merville, New Jersey, USA) as illustrated in Fig-
ure 2. MISKT was performed in a laparoscopic
box trainer (iSurgicals, UK) using 2/0 Polysorb
suture material with laparoscopic needle holders
(model 26173KC; Karl Storz GmbH and Co, Tut-
tlingen, Germany) as illustrated in Figure 1.

Figure 1: A participant wearing the mobile EEG
cap. Data recorded at each electrode is trans-
ferred wirelessly to the amplifier connected to a
standard PC. The participant is performing the
MISKT task in a laparoscopic box trainer.

Figure 2: An example of the OHKT task on the
bench knot-tying trainer.

In order to simulate a more realistic set-
ting, a secondary auditory task was added to
the experiment. In addition to performing OHK-
T/MISKT, participants were required to simul-
taneously count the number of high-toned beeps
randomly introduced amongst a series of low tone
beeps (secondary task). The auditory stimuli were
generated at a standardized decibel level from a
speaker placed at a set distance away, on the right
side of the participant (simulating a stationary
auxiliary device). A tone was presented every sec-
ond. 20% of tones were high-toned target stimuli.

There were five experimental conditions: Sec-
ondary (auditory) task only, primary (OHKT,
MISKT) task only, and dual-task OHKT and
MISKT plus auditory.

This is the author’s final draft. The final publication is in Zander, T. O. et al. (2017), Journal of Medical
Robotics Research, 2 (1), 1750003. DOI: 10.1142/S2424905X17500039



Following the warm-up phase, the secondary
task was performed once for a baseline measure-
ment. The other four conditions were performed
in three sets (i.e. 12 sets in total), the order of
which was randomized to minimize learning and
other temporal effects such as fatigue.

2.3 Subjective Measure: NAXA-
TLX

Subjective cognitive load of the baseline, mono,
and dual tasks were all assessed by the NASA-
TLX questionnaire.12 After each set, partici-
pants provided ratings on six subscales (mental
demands, physical demands, temporal demands,
own performance, effort, and frustration), which
were then combined into a single task load index,
ranging from 0 to 100. Higher NASA-TLX scores
indicate higher mental workload experienced by
the participant.

2.4 Objective Measure: EEG Set-
Up and Processing

32-channel EEG was recorded from all partici-
pants with a BrainAmp system (Brain Product-
s GmbH, Gilching, Germany). Data was trans-
ferred wirelessly between cap and amplifier by a
BrainAmp MOVE system (Brain Products Gmb-
H, Gilching, Germany), in order not to restrict
the free movement of the participants (Figure 1).
Due to technical failure, EEG data from the first
three participants was discarded, leaving six par-
ticipants. This is the minimum required number
for statistical significance in our tests

A passive BCI was set up using the BCILAB
toolbox34 with the intention to discriminate con-
tinuously, based on the EEG, whether a partici-
pant is working in OHKT or MISKT mode. In
brief, each second of the continuous EEG data
was transformed into a set of features of lower di-
mensionality. The transformation was optimised
to discriminate between the two primary condi-
tions (OHKT/MISKT), allowing continuous task
detection. We used data from the dual-task ses-
sions, as these represent the most realistic con-
dition. Specifically, features were extracted by
the spectrally-weighted Common Spatial Patterns
(SpecCSP) method35 and classification was done
with a Linear Discriminant Analysis (LDA)36 reg-
ularized by shrinkage.37 SpecCSP generated 16

pairs of spatio-temporal filters for each participan-
t based on all data recorded for this participant
in the dual-task session. The spatial and tem-
poral parameters of these filters were optimized
iteratively to optimally discriminate between the
two classes (OHKT/MISKT) based on brain ac-
tivity including the theta and alpha bands (5–18
Hz). 32-dimensional features were generated by
projecting one second of data recorded after the
onset of each tone with each of the filters gener-
ated by SpecCSP. This resulted in 512 normally
distributed features per class. LDA is the optimal
classifier for this decision problem, as it provides
an optimized decision plane and suffices a very low
Vapnik-Chervonenkis (VC) dimension.38

An estimate of the online (real-time) accura-
cy of the resulting classifier was derived by cali-
brating the classifier on one part of the data, and
applying it to the remaining part. Thus, for each
second of the data that was not used for calibra-
tion, the classifier indicated whether or not the
surgeon was at that time performing OHKT or
MISKT. This was done a number of times, cali-
brating on and applying to different parts of the
available data. The resulting accuracy indicates
the percentage of correct indications. Specifical-
ly, we used a (5,5)-times nested cross-validation36

with margins of 5. These margins were select-
ed to guarantee the IIDness of the features. The
outcomes of the 5-fold outer runs, regularized by
the one shrinkage parameter derived in the ap-
propriate inner runs, gave the estimates for the
reliability of each model. The overall reliabili-
ty (Estimated Classification Accuracy, ECA) was
then given by the mean of these single runs’ reli-
ability. The validity of this estimate is supported
by the low probability of overfitting of classifier-
s with low VC dimension, by the fact that the
suboptimal ratio between feature dimensionality
and number of trials can be counterbalanced by a
well-chosen shrinkage regularization, and lastly by
the fact that a nested cross-validation was applied
properly.

For an additional accuracy measure, testing
how well the classifier performed on data recorded
in a different context, each participant’s classifier,
trained on dual-task EEG data, was then test-
ed on the EEG data recorded for this respective
participant during the mono-task session. Fea-
tures were generated as above from each (non-
overlapping) second of this session, and classified
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as being either OHKT or MISKT task periods.
This was then compared to the real task labels,
resulting in a pseudo-online classification accura-
cy (POCA), simulating an online application of
the classifier on a separate data set.

In essence, the SpecCSP patterns generated
by the classifier can be interpreted as filters, iso-
lating specific, maximally discriminative process-
es.35 They thus identify different cognitive pro-
cesses, which can be investigated further. To in-
vestigate these electrocortical processes underly-
ing classification, EEGLAB39 was used to clus-
ter patterns resulting from each SpecCSP filter
by multiplying with the inverse covariance matrix
of the underlying data. These patterns represent
the scalp projections of the underlying generator
sources. Clustering is a method to identify sources
that consistently aided classification across par-
ticipants. To this end, the patterns’ spatial dis-
tributions were first reduced to 25 dimensions by
means of PCA and subsequently clustered using
k-means specifying 28 clusters.36 Further analy-
sis focused on both the clusters and the individual
SpecCSP patterns. The time course of the event-
related spectral perturbation (ERSP,40) and the
frequency power spectrum were calculated for 0.5
seconds before the onset of the auditory stimulus
until 1.5 seconds after. The timing was chosen
to demonstrate repeated stimulus related effect-
s. Permutation tests, corrected for false discovery
rate (FDR), were used to test for significant dif-
ferences between the ERSPs, as implemented in
EEGLAB.39

Task NASA-TLX score

Mono OHKT 16.99± 2.85

Mono MISKT 48.79± 6.17

Auditory 24.33± 6.07

Dual OHKT 51.04± 7.43

Dual MISKT 67.55± 6.92

Table 1: Group averaged NASA-TLX scores
(mean ± S.E.) for each task.

Test P-value

Dual OHKT vs Mono OHKT .018

Dual MISKT vs Mono MISKT .012

Dual OHKT vs Auditory .017

Dual MISKT vs Auditory .011

Mono OHKT vs Mono MISKT .012

Mono MISKT vs Auditory .025

Mono OHKT vs Auditory .553

Table 2: Significance values for across-subjects
comparisons of NASA-TLX scores using Wilcoxon
signed-rank tests.

Participant ID ECA POCA

1 82.4% (6.2%) 72,5%

2 77.8% (11.4%) 77.2%

3 95.5% (4.1%) 91.7%

4 90.7% (5.9%) 95.8%

6 99.7% (0.4%) 97.8%

Table 3: Estimated classification accuracy (ECA)
and pseudo-online classification accuracy (POCA)
for each participant.

3 Results

3.1 Questionnaire Results

The raw questionnaire results are listed in Table 1.
The scores were compared using Wilcoxon signed-
rank tests. The alpha level was set at 0.05. The
results of these comparisons are listed in Table
2. It is clear that dual-task MISKT was found
to be the most challenging task, followed by dual-
task OHKT and mono-task MISKT. The two least
challenging tasks were the secondary task in itself,
and mono-task OHKT. These two did not differ
significantly from each other.

3.2 BCI Results

3.2.1 Classification Accuracy

Table 3 provides the estimated classification accu-
racies from the calibration session and the pseudo-
online classification accuracies from the test ses-
sion for each participant. High accuracies in both
measures attest to a high reliability of the passive
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Figure 3: Analysis of a number of patterns consistently identified by the BCI across participants show
different activities that contributed to classification. Top row: Representation of clustered SpecCSP
pattern means showing the topography of the identified influences. Middle row: Cluster mean ERSP
time-locked to tone onset in both conditions, illustrating the spectral activity. Bottom row (a,c,d):
Frequency spectrum projected from a single pattern illustrating non-time-locked differences between
conditions. Bottom row (b): Selected component ERSP, illustrating individual differences within this
cluster.

BCI system applied here. As there is no signif-
icant difference (tested with a Student’s t-test)
between the ECA and the POCA measures, it is
unlikely that the BCI definition overfitted on un-
known factors during calibration. Together, these
results provide a promising step towards robust,
real-time task detection in the theatre.

3.2.2 Contributing EEG Activity

Figure 3 highlights a number of findings from the
neurophysiological analysis of the EEG activity
that contributed to classification. The SpecC-
SP patterns that were generated and used by
the classifier, can be interpreted as isolating d-
ifferent discriminative processes.35 Across partic-

ipants, the classifier identified a number of con-
sistent patterns reflecting task-relevant processes.
Based on the topography of their scalp projec-
tions, these processes can be localised within the
three-dimensional space covered by the electrodes.
We highlight four clusters that illustrate the va-
riety of cortical and non-cortical information that
passive BCI systems can potentially make use of
to enable real-time user state measurement.

The top row of each panel shows the mean
spatial distribution of the cluster patterns. Be-
low that, the cluster’s mean 2-second ERSP up
to 25 Hz, time-locked to the auditory stimuli, is
shown for both the OHKT condition (blue) and
the MISKT, higher task load condition (green),
as well as a plot highlighting significant differences
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between the two computed by permutation statis-
tics. Exemplary single-participant data (frequen-
cy spectra or ERSP) is illustrated on the bottom
row.

Panel a of Figure 3 shows a cluster associat-
ed with ocular activity, as identifiable by the s-
patial distribution of the weights. The stimulus-
locked increase in broadband spectral power indi-
cates that this cluster entails slow eye movements
(horizontal movements associated with the task)
as well as high frequency muscle activity related
to muscular components of the eye movement in
the MISKT condition. The increase in the low fre-
quency range of the individual spectral plot clear-
ly shows an increase of blink activity during higher
task load.

A cluster most likely representing the process-
ing of auditory information, with high weights n-
ear the right auditory cortex, is presented in panel
b of Figure 3. This cluster’s mean ERSP reveal-
s stronger desynchronization in a wide frequency
range up to 25 Hz for the lower task load condi-
tion (OHKT) time locked to the auditory stimulus
onset. This is reflective of increased processing of
auditory information (i.e. more resources avail-
able for auditory processing) during lower task
load levels. However, these differences are on-
ly marginally significant and are present only for
very restricted periods of time. The bottom part
of this panel shows the ERSP projected by a s-
ingle pattern for one participant, revealing strong
differences for this individual.

Increased blink activity and modulated audi-
tory processing can be well explained given the
current conditions, but may not be specifically re-
lated to task load in general. For more generic,
context-independent effects, we had hypothesised
to find changes in parietal alpha and frontal theta
activity. These effects of task load are further in-
vestigated in panels c and d of Figure 3.

Panel c represents a cluster of SpecCSP
topographies with high positive weights over
occipito-parietal areas. The mean ERSPs demon-
strate, contrary to the hypothesis, increased alpha
desynchronization in the low as compared to the
high load condition. However, individual spectra
of certain participants, as e.g. illustrated in the
bottom row, do demonstrate the expected, op-
posite effect in the alpha band. Here one must
note that the topographic plot shows two separate
weight centres over frontal and posterior areas,

indicating that this component may reflect two,
probably related processes. The observed effects
are time-locked to the onset of the auditory stim-
ulus, and may thus partially represent a cognitive
process related to the secondary task, rather than
the expected more generic load effect.

Panel d, finally, shows three plots generated
from a cluster representing theta activity, most
likely the frontal theta component described in.31

The mean topographic distribution of the pattern-
s’ SpecCSP weights shows a fronto-posterior po-
larity inversion with positive fronto-central weight
and negative weights over the posterior cortex,
with a slight right-lateralization. In line with our
hypothesis, the ERSPs show a clear increase in the
theta band during the MISKT condition. The fre-
quency spectrum projected from a single SpecCSP
pattern demonstrates how the energy in the theta
band increases with higher task load. There also
are supportive effects in the alpha band, but these
fail to reach significance here.

4 Discussion and Conclusion

This study simulated a realistic operative envi-
ronment using both a traditional and an MIS ver-
sion of an established surgical task. These tasks
were combined with an additional auditory task
to increase load. A noninvasive EEG system that
allowed free movement was used to record the
participants’ brain activity throughout the exper-
iment. Based on this data, a passive BCI was
calibrated in order to automatically discriminate
between periods of OHKT (lower load) and MISK-
T (higher load). We had hypothesised that a) this
discrimination was reliably possible, and b) that it
would take parietal alpha and frontal theta effects
into account.

In similar simulations of high-risk scenarios,
such as military operations or air traffic control,
using fNIRS optical brain imaging, an increase in
task complexity was linked to an increase in pre-
frontal cortex activity.41,42 The prefrontal cortex
is a region within the frontal lobe associated with
e.g. executive control and error detection. When
an auditory secondary task is introduced, cogni-
tive load increases, leading to a reduction in alert-
ness, as e.g. observed by prolonged brake reaction
times in a driving task.43 Similarly, the impact of
auditory distractors on the surgeon whilst oper-
ating, as used here, may increase load especially
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during critical, technically challenging moments
or near the end of the procedure as fatigue sets
in.

The passive BCI used here was calibrated on
data from these dual-task scenarios. It then
was capable of discriminating between EEG da-
ta recorded during mono-task OHKT and MISK-
T sessions with a high reliability. The cross-
validated accuracy estimations for each partici-
pant are not significantly different than the accu-
racies achieved on the test set, strongly support-
ing the BCI’s ability to automatically discriminate
between conditions even in real time. In practice,
EEG does not only contain brain activity, but also
first order artefacts related to bodily activity (e.g.
muscle tension, eye movements) and second or-
der artefacts (e.g. external electromagnetic fields,
unstable electrodes, mechanical forces working on
the cables or electrodes44,45). Because of this, a
range of different types of activity is available for
the BCI to aid the discrimination between con-
ditions, both cortical and non-cortical. Further
analysis of the features underlying the BCI’s oper-
ation provides information with respect to the se-
lected dynamics that contributed to classification.
Indeed, a number of different activity sources are
reflected in the features.

The processes underlying the demonstrated
successful discrimination include cortical activity
in line with previous findings related to alpha and
theta activity, as hypothesised, although some in-
dividual differences remain. We also found oth-
er processes that may not be uniquely related to
generic task load, but may still be relevant to track
in real time, as BCI technology allows.The anal-
ysis presented here does not definitively exclude
the possibility that other processes played a role in
classification, but the BCI’s level of performance
across training and testing conditions attests that
the classifier was unlikely to be overfitted on cir-
cumstantial activity. It is clear that BCI enables
a number of different task-relevant cortical and
non-cortical measurements to take place simulta-
neously.

A focus on cortical as opposed to artefactu-
al activity is advantageous as it is likely to be
more robust across different situations and contex-
t. Figure 3 shows that relevant cortical informa-
tion was indeed available, and taken into account
for classification. It is thus possible to monitor
and detect task-relevant cortical activity from the

EEG of a surgeon actively involved in a surgical
procedure.

An ability to detect task load in real time en-
ables a number of potentially important improve-
ments to be implemented to aid the surgeon and
the operative team. Regarding robotic surgery,
this pBCI framework has implications that may
help maximize patient safety. For example, at
times of escalating load burden, the system may
initiate active dampening which may change the
ratio of instrument motion scaling, or engage dy-
namic active constraints to prevent instruments
from entering critical ‘no go’ anatomical zones
to restrict the chance of injury to vital organ-
s. Mundane tasks may be relegated to the robot
as a means of adaptive automation to enable the
surgeon to focus solely on critical tasks requiring
higher level decision-making. Such an intelligen-
t system may also be used for surgical training
and assessment of technical and cognitive skills,
and opens avenues for neural feedback training to
improve performance.

5 Outlook

This study represents a first proof of principle that
passive BCIs can identify task-relevant cognitive
processes in established surgery scenarios, and dif-
ferentiate between different tasks based on contin-
uous EEG data. The estimated and pseudo-online
classification accuracies support the idea that pas-
sive BCIs may be used for real-time task load de-
tection in the theatre during robotic surgery sce-
narios. This opens up a variety of applications for
BCI technology, and gives a perspective on new
types of assistive technology in these and other en-
vironments. Aside from task load, other cognitive
and affective processes can potentially be assessed
using the same BCI methodology, providing rich-
er, more detailed information about the current s-
tate of the operator. This information can then be
used to automatically improve the interaction be-
tween the operator, machine, and operative assis-
tants. Transferring knowledge from neuroscientif-
ic research into the field of passive BCI should en-
able many different cognitive and affective aspects
to be detected automatically. Robotic surgery in
particular could benefit from information about
the current level of attention of a surgeon, or by
detecting specific intentions (e.g. the need for a
specific tool, which can then be prepared).
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Future steps continuing the work presented
here could include an investigation of the task
specificity of the presented approach. Can it be
transferred easily to tasks that are significantly
different from OHKT and MISKT? Practical as-
pects of the set-up may also be investigated: Can
the amount of training data be reduced without
losing accuracy, and what is the minimum amount
of electrodes needed for reliable results?

A final, highly interesting step would be to
investigate the application of other developments
from the field of human-computer interaction and
passive BCI to robotic surgery, in particular, pas-
sive BCI-based implicit control.46 Implicit control
could open up an additional, goal-oriented com-
munication channel for the surgeon without plac-
ing any additional load on them. The fusion of two
worlds, that of passive BCI research and robotic
surgery, shows the potential of leading us into a
fascinating new world of brain-based interaction.
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