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Abstract— It has previously been shown that passive brain-
computer interfacing enables implicit control over a cursor:
participants were able to guide a cursor towards a target
without being aware of doing so. The control was based on
their brain’s automatic responses to the cursor’s autonomous
movements. This raises questions with respect to informed
consent and privacy of thought. The extent to which these
ethical issues are truly relevant depends on the type of cognitive
processes targeted by implicit control paradigms: did the cursor
indeed have access to the participants’ subjective preferences? It
has been argued that the relevant neurophysiological processes
may be based on visual salience rather than on the participants’
personal interpretations. We now present a paradigm that aims
to differentiate between salience and valence. Based on data
from eight initial participants, we present findings that indicate
both processes play a role, meaning that valence is not solely
responsible, but indeed reflected in the signal.

I. INTRODUCTION

Passive brain-computer interfaces (passive BCIs; pBCIs [1])
use brain activity as input to applications without that input
being voluntarily generated or modulated by the user. Instead,
the application adapts automatically to naturally occurring
user states which are interpreted in real time. A common
example of a passive BCI application assesses a user’s mental
load while performing a task, in order to support the user
(e.g. [2], [3], [4]).

Beyond mental load, passive BCI research demonstrates
an increasing ability of pBCI systems to respond intelligently
to various types of obtained input [5]. In particular, passive
BCI has been shown to enable implicit control [6], [7], [8],
[9]. Notably, participants have been able to guide a computer
cursor towards its desired target without being aware of doing
so [7], [8]. This cursor was controlled by the computer and
initially moved randomly over the nodes of a grid. Following
each cursor movement, the electroencephalogram (EEG)
of the observing participant revealed systematic, seemingly
involuntary brain activity that could be used to decode the
participant’s response to each movement. The computer could
thus assess in real time whether or not the cursor’s movements
were in line with the goal of the observer, i.e., to reach
the target. In the cited experiment, the computer used this
information to steer the cursor towards the decoded target.
As a result, the participants—who believed themselves to be
in a merely observant role—implicitly controlled the cursor.

1Team PhyPA, Biological Psychology and Neuroergonomics, Technische
Universität Berlin, Berlin, Germany

2Electrical and Computer Engineering, University of California San Diego,
La Jolla, CA, USA

3Zander Laboratories B.V., Amsterdam, the Netherlands
∗Corresponding author, lrkrol@gmail.com

This highlights potential advantages of pBCI-based implicit
interaction, e.g. for effortless control, but also potential
dangers. Since the implicit input is not under voluntarily
control, this type of neuroadaptive technology poses a
danger to informed consent and the privacy of thought [10].
Therefore, it is important to investigate what information
exactly can be decoded from EEG during such experiments,
and to what extent such information potentially reflects
personal opinions and values as opposed to more neutral
cognitive processes.

In this paper, we adapt the implicit cursor control exper-
iment [7], [8] in order to further investigate the relevant
neurophysiology. The assumption of the original experiment
was that the relevant signal isolated by the classifier, i.e. the
signal that distinguished ‘good’ and ‘bad’ cursor movements,
reflected predictive coding. The framework of predictive
coding holds that the human brain performs continuous,
automatic prediction of future (neuronal) events, and contin-
uously compares those predictions with their corresponding
final perceptions [11], [12]. The assumption was that the
participants, having no other cues, predicted that the cursor
would go towards their desired target. Deviations from that
prediction resulted in a detectable error-related negativity
[13], which furthermore scaled linearly with the intensity of
the error. This signal allowed the classifier to categorise the
cursor’s movements accordingly.

Interpreted as such, predictive coding is a neutral cognitive
process that merely produces predictions based on available
information. In the original experiment, the desired target was
visually highlighted, thus making it a source of information
even without further interpretation as to whether reaching
this target would be ‘good’ or ‘bad’—other potential targets
were not highlighted the same way.

However, a more nuanced perspective has been suggested
to interpret the detected event-related potentials (ERPs) [14].
Holroyd and colleagues make a distinction between surprise-
or salience-related signals on the one hand, the response
of which is modulated by the expectancy of events [13],
and the reward prediction error signal which responds most
strongly to unexpected (i.e. surprising, salient) events but
whose sign is inverted for positive versus negative events
[15]. This has primarily been investigated in the context of
feedback, where a positive event would for example indicate
correct performance or monetary reward.

Thus, although the original implicit cursor control experi-
ment may not have contained directly comparable feedback
as such, it is worth investigating to what extent the signal
that allowed classification may also have “[manifested] as a
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specific interaction between outcome valence and outcome
probability” [16]. However, the original experiment did not
allow these two to be differentiated, because salience and
valence of the cursor’s movements were coupled. Therefore,
we here present a similar but adapted experiment where the
visual stimuli and the participant’s task have been designed
to allow such a differentiation to be made.

In this design, visual stimuli were left constant between a
‘negative’ and a ‘positive’ condition. This ensured that any
salience-related processing, to the extent that this processing is
based on the visually presented information, remains constant
between conditions. The valence of the visually identical
stimuli was manipulated by changing the participant’s task
between conditions.

If a separate valence-related signal can indeed be identified
in the context of implicit cursor control, and meaningfully
exploited by a classifier, this would underscore the earlier-
reported potential issues with implicit control.

Here we report initial findings based on the first eight
participants of the experiment.

II. METHODS

A. Participants and Equipment

Eight participants (aged 28.3 ± 5.1 years, five female)
participated in the experiment. 64-channel EEG was recorded
at 5000 Hz using BrainAmp DC amplifiers (Brain Products
GmbH, Gilching, Germany), with electrodes arranged ac-
cording to the international 10-20 system, referenced to FCz.
Participants were seated in front of a 27” computer display
placed approximately 1 m away from them.

B. Experimental Paradigm

The stimuli closely followed the original implicit cursor
control experiment [7], [8]. The main difference was the
different grid layout.

Fig. 1. The grid seen by the participants. The centre node is visually
highlighted. The cursor is at one of the four possible starting positions.

Participants were shown the grid illustrated in figure 1,
with the centre node visually highlighted to be the reference
point. At the start of each grid run, the cursor was placed two
nodes away from the centre in a horizontal or vertical line.
The cursor would then move every three seconds to one of
the adjacent nodes, in one of up to eight different directions.
The exact moment of each movement could be predicted due
to the consistent timing and the same animations as used
in the original experiment. Participants were instructed to
observe these movements and evaluate with a button press
each individual movement as ‘appropriate’ or ‘not appropriate’
with respect to the current goal.

There were two conditions, which we refer to as ‘positive’
and ‘negative’ respectively. The instructions for the positive
condition reflected those of the original experiment: Partici-
pants were informed that the goal was for the cursor to reach
the centre as quickly as possible. Reaching the centre was to
be seen as a success; if this had not been achieved after 50
movements, this was to be seen as a failure.

In the negative condition, the goal was for the cursor to
stay away from the centre as long as possible. Not reaching
the centre after 25 movements was to be seen as a success;
reaching the centre was to be seen as a failure. The maximum
number of movements per grid was lower in this condition
to approximately equalise centre hit ratios.

Thus, keeping visual stimuli identical, these two conditions
inverted the meaning of the stimuli. What was ‘appropriate’
in one condition was ‘inappropriate’ in the other.

The otherwise square grid’s edge nodes were removed so
as not to create any nodes that may have been perceived to
be further away from the centre than others. Such ‘mental
opposites’ could have been used by participants to mentally
invert the task, for example turning ‘stay away from the
centre’ into ‘go to the corners’.

The two conditions were presented within-subjects in two
counterbalanced blocks with a break in between. In each
block, participants saw and evaluated 800 movements. After
every success or failure, a new grid would be started. Short
breaks were given between grids.

The cursor moved randomly throughout the experiment.
There was no online condition where real-time classifier
output influenced the cursor’s behaviour.

C. Feature Extraction and Classification

The recorded EEG data was resampled to 250 Hz and band-
pass filtered from 1 to 15 Hz using an FIR filter with a Kaiser
window and 250 taps. Features were extracted using the
windowed means approach [17], taking the mean amplitudes
of eight non-overlapping consecutive time windows of 50 ms
each, between 100 and 500 ms following each cursor
movement. Regularised linear discriminant analysis (LDA;
[18]) was used for classification. The regularisation parameter
was calculated to shrink the sample covariance towards a
diagonal matrix (i.e. identity times the average of the diagonal
elements of the sample covariance) [19]. A 5-fold cross-
validation was used to generate estimates of the classifier’s
accuracy. When classes had an uneven number of trials, they
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were balanced before each calculation by randomly discarding
trials from the larger class. The given accuracy estimates are
mean values of 10 subsampling repetitions of the larger class.

Class membership of each trial was determined by that
trial’s cursor movement’s angular deviance from a straight
path towards the centre. Thus, an angular deviance of 0◦

indicates a movement leading straight towards the centre, and
180◦ leads the cursor away. Due to the different layout of
the grid, we re-examined the class definitions used in the
original experiment. Since no ground truth is available as to
what participants would implicitly categorise as ‘appropriate’
or ‘inappropriate’, or even ‘towards’ and ‘away’, classifier
accuracies were calculated for a number of different class
definitions. Based on this, a single definition that performed
well across conditions was selected for further analyses. (The
original experiment has shown that implicit and explicit
responses do not necessarily agree. Therefore, an analysis of
the participants’ explicit responses, the button presses, is not
within the scope of the current paper.)

Estimated classification accuracies are given for both the
original raw EEG data and ICA-pruned data described next.

D. Independent Component Analysis

The raw EEG data was first resampled to 250 Hz and
high-pass filtered at 1 Hz using a Hamming-windowed
sinc FIR filter with the -6 dB cutoff point at 0.5 Hz. Bad
channels were removed based on visual inspection aided by
clean rawdata with a correlation criterion of 0.85, from
EEGLAB 14.1.2 [20]. Removed channels were interpolated
before re-referencing all channels to the common average. An
independent component analysis (ICA; [21]) decomposition
was calculated using AMICA 1.5, and dipoles were fitted to
this decomposition using DIPFIT 2.x.

Components reflecting cortical and non-cortical activity
were identified following the procedures laid out in [22] sup-
ported by the ICLabel plug-in [23]. Non-cortical components
were discarded from further analyses (see section III).

E. Component Selection, Clustering, and Statistics

For each time window used by the LDA classifier, the cor-
responding LDA patterns were calculated for each participant
and condition using the method published in [24]. These pat-
terns represent the projection of the signal that is isolated by
the classifier in order to distinguish between the classes. Just
as with scalp EEG data itself, it is possible to ‘unmix’ these
patterns using the previously calculated ICA decomposition’s
unmixing matrix. The resulting relevance weights represent
the relative contribution of each independent component (IC)
to the pattern, and thus, the relative contribution of each IC
to classification in the given time window. This method is
described in detail in [25].

It is generally observed that only a small percentage of ICs
contribute significantly to classification. We therefore only
kept ICs with a weight greater than three standard deviations
from the mean in any one time window for each participant.

The remaining ICs thus represented cortical components
that contributed significantly to classification. These ICs were

then manually clustered based on their scalp topography,
dipole location, and ERPs using EEGLAB.

As the classifier focused on scalp ERPs, the resulting
clusters were analysed from an ERP perspective as well. After
band-pass filtering the data between 1 and 15 Hz, differences
between ERPs were calculated using Student’s t-tests for the
two independent variables: negative versus positive condition,
and towards versus away from the centre, using the class
definitions found earlier.

III. RESULTS

The optimal angular deviations were ≤ 27◦ for ‘towards
the centre’ and > 117◦ for ‘away from the centre’. On
average across conditions and participants, a range of different
definitions of which movements were considered to be
going ‘towards’ and ‘away from’ the centre produced similar
classification accuracies. On average, the selected definition
differed less than one percentage point from optimally selected
angles on a per-participant, per-condition basis.

The cross-validated classification accuracies of the selected
definition of the class boundaries are presented in table I.
As classes were balanced, chance level was at 50%. On
average, there were approximately 165 trials per class, with
significance thus being reached at a classification accuracy
of approximately 55% or more [26].

Both before and after cleaning, there was a difference of
roughly 10 percentage points between positive and negative
conditions. Permutation tests with 10000 iterations showed
these differences to be significant (p < 0.01). Differences
between data sets (before and after cleaning) within the same
condition were not significant.

TABLE I
CROSS-VALIDATED CLASSIFICATION ACCURACIES.

Raw Data Pruned Data
Participant Positive Negative Positive Negative

1 77 66 86 74
2 67 66 68 67
3 75 69 80 70
4 81 74 85 80
5 79 65 82 67
6 90 75 92 80
7 78 62 83 68
8 83 62 84 65

Mean: 79 68 83 71 %

Because removing all eye, muscle, noise, and undetermined
ICs did not decrease the separability of the classes, and
because we are currently interested only in neurophysiological
effects of the paradigm, we chose to continue only with
the ICA-pruned data. Out of the 493 ICs, the selection of
cortical ICs left 148 for an average of 18.5 per participant.
No participant had less than 13 cortical ICs.

We constructed each of these IC’s relevance weight using
individual classifiers calibrated on this ICA-pruned data. The
sorted distribution of all relevance weights for all participants
in both conditions is shown in figure 2. The expected pattern
where only a small number of ICs contribute significantly to
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classification can clearly be observed. Selecting only those
with such a significant contribution left 44 ICs in total, or
5.5 per participant, with each participant having at least 3.
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Fig. 2. Cortical independent components for each participant and each
condition sorted by their computed relevance weight.

These 44 remaining ICs that contributed significantly to
class separability showed clear similarities between par-
ticipants, most clearly visible with respect to their scalp
topographies. The three clusters that were produced are
illustrated in figure 3 by their IC scalp topographies.

The largest cluster, consisting of 25 ICs from all partici-
pants, contains ICs located primarily in the occipital, and to a
lesser extent the parietal lobe. On average, these ICs project
most strongly onto occipital sites. The second-largest cluster,
with 7 ICs from 6 participants, projects most strongly onto
central sites; the individual variability in scalp projections
and dipole locations is somewhat greater. The third cluster
contains ICs located in the frontal lobe, primarily around the
medial prefrontal cortex. This cluster contains 6 ICs from
5 participants. Two remaining ICs do not match any of the
other clusters’ properties and have thus remained unassigned.

The grand-average ERPs of the ‘occipital’ and ‘frontal’
clusters are shown in figure 4. They have been separated by
the two independent variables under investigation: condition
(positive versus negative) and movement class (towards versus
away from the centre).

The statistics show that the occipital cluster consistently
exhibits significant differences between movement classes
prior to 200 ms, but no consistent significant differences
between condition. The frontal cluster consistently exhibits
significant differences between condition around 400 ms, as
well as between movement classes after 200 ms.

Among others, further significant effects are seen in the
occipital cluster between conditions, but only in one class.

The central cluster is not further elaborated here. It showed
no significant effects, except for a section around 250 ms
following cursor movement limited to the positive condition.
It is possible that activity related to the eye muscles are
included in this cluster.

IV. DISCUSSION
We adapted the original implicit cursor control experiment

[7], [8] to be able to independently manipulate salience and

valence. These two aspects were coupled in the original
experiment, although it has been argued that they may
contribute independently to the identified signal [14].

By comparing cursor movements that went towards and
away from the centre, with the centre thus serving as the one
and only salient visual reference point, we could investigate
visual salience-related cortical processing across conditions.
By keeping these stimuli identical but inverting the valence
of the cursor movements between two conditions, we could
investigate different affective processing of the same stimuli.

We trained individual classifiers to evaluate the separability
of the classes. In both conditions, both classes of movements
could be classified with meaningful, above-chance accuracy.
However, clear differences were observed between conditions,
with the positive condition showing significantly better
separability than the negative condition. This rules out a
classification signal that is completely driven by visual
salience, as this remained constant. We thus assume that the
difference between conditions was induced by the different
instructions, which inverted the valence of the centre node.

After decomposing the data into independent components
using ICA, we focused only on those ICs that contributed sig-
nificantly to the above-mentioned classification. This was done
by by translating the classifier’s LDA weights into relevance
weights for each IC [25]. Those with above-average relevance
were clustered into three contributing cortical regions: roughly
named an occipital, central, and frontal cluster. The occipital
cluster exhibited consistent significant differences between
salience-related classes, whereas the frontal cluster exhibited
consistent significant differences between valence-related
conditions. This supports the hypothesis that these are indeed
two separate contributing cortical processes.

However, the effects are not entirely limited to these two
results: the frontal cluster also shows differences between
classes, albeit at a different time compared to the occipital
cluster. This was, however, expected, as the classes of course
also represent a difference in valence. The exact timing
remains the be investigated. We also do not currently have an
explanation for the occipital cluster’s significant differences
between conditions only for movements away from the centre.
The role of the central cluster was inconclusive.

These are the initial results from eight participants. A
number of shortcomings must be mentioned.

First of all, the number of participants is relatively low.
This is also reflected in the fact that not all eight participants
are represented in all clusters. We are currently recording
additional participants to increase the results’ power.

Additional data should also increase the clustering reli-
ability. EEGLAB’s k-means clustering does not result in
consistent, unique solutions [27]. Here, we used manual
clustering and presented all scalp maps for inspection in
figure 3. With additional data, repeated k-means clustering
and automatic cluster selection [27] should result in a more

A remaining difficulty concerns the definition of salience.
We have here argued with respect to visual salience, i.e., the
fact that the centre was the one and only node of the grid that
was visually and conceptually more prominent than the others.
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It is possible, however, that participants mentally shifted their
attention to one of the other nodes [28], thus internally altering
its salience. We removed the most obvious candidate nodes
for such covert attention shifts by removing the corner nodes.
Furthermore, the task is defined with respect to the centre
node, thus making this the relevant reference node in either
case. Still, we cannot fully control the participants’ internal
processes. This, too, will be revisited when additional data,
including gaze, is available.

As it stands, we have found first indications that separate
salience and valence processes play a role in the implicit
cursor control paradigm. Although when counted by sheer
number the salience ICs form a majority, a consistently
valence-related cluster has been identified.

It is thus conceivable that neuroadaptive technology may
be able to separately detect and target valence-related brain
activity, e.g. using cognitive probes [29]. This may allow
personal values to be inferred. While such information can
be used productively for e.g. personalisation or productive
support [30], it should be handled with due care for data
privacy, reinforcing the need for ethical considerations both
in research and commercial applications of implicit control
and neuroadaptive technology.
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Fig. 3. The 44 ICs that were most relevant to classification shown by their scalp topographies, clustered into occipital (left), frontal (upper right) and
central (lower right) clusters. Two ICs remained unassigned (bottom centre). The larger topographies are cluster means.
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Fig. 4. Blue graphs: Grand-average ERPs of the occipital (left) and frontal (right) clusters separated by condition (negative/positive) and movement class
(away/towards). Red graphs: FDR-corrected p-values calculated on the differences between conditions and movement class. Negative: Cursor movements in
the ‘negative’ condition; movements towards the centre were undesirable, away from the centre desirable. Positive: Cursor movements in the ‘positive’
condition; movements towards the centre were desirable, away from the centre undesirable. Away: Cursor movements that went away from the target.
Towards: Cursor movements that went towards the target.
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