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Abstract 

Passive brain–computer interfaces (passive BCI; pBCI) have been introduced and formally 
defined almost a decade ago and have gained considerable attention since then. In this 
chapter, we clarify some points of confusion and provide a perspective on the past, present, 
and future of the field of passive BCI. This perspective concerns a key aspect with regard to 
which various pBCI-based systems differ from each other: interactivity. The more interactive 
a system is, the more responsive it is, the more autonomous, and the better capable of 
adaptation. Along these lines, we identify and describe four relevant categories of systems 
with varying levels of interactivity: mental state assessment, open-loop adaptation, closed-
loop adaptation, and automated adaptation. We give examples of past and current research for 
each of these categories. The latter three are collectively introduced as neuroadaptive 
systems. This perspective and formal categorisation helps to highlight human–computer 
interaction aspects that are relevant for the design of pBCI-based systems and points to 
possibilities for future research and development into passive BCI, implicit interaction, and 
neuroadaptive technology. 
 

3.1 Passive Brain–Computer Interfaces 

In 1977, Jacques J. Vidal demonstrated the real-time detection of “brain events”, and offered 
an example of how these might be used to control a system. Instead of using offline, a 
posteriori methods to investigate neuroelectric brain activity, Vidal suggested “treating the 
experiment as a signal detection problem” (Vidal 1977): with continuous access to an 
electroencephalogram (EEG), a computer classified incoming EEG data as belonging to one 
of four categories, based on previously learned (and continuously updated) decision 
strategies. As such, the system was able to recognise specific brain activity in real time. 

Although Vidal speculated upon a wide range of potential future applications of this 
approach, it was in a clinical context that brain–computer interface (BCI) methodology 
gained widespread attention. It was quickly realised that such direct BCIs could potentially 
provide a means for paralysed or otherwise motor-impaired people to communicate with the 
outside world without having to use their muscles (Wolpaw et al. 2002). This resolve to help 
those people who stood to benefit most from this technology led to a strong focus on BCI for 
direct communication and control, and resulted, inter alia, in different mental speller devices 
(e.g., Birbaumer et al. 1999; Brouwer & Van Erp 2010; Farwell & Donchin 1988; Furdea et 
al. 2009; Treder et al. 2011) and brain-activated prostheses (e.g., Müller-Putz & Pfurtscheller 
2008; Soekadar et al. 2016; Wessberg et al. 2000; Wolpaw & McFarland 2008). For a long 
time, in fact, BCI research appeared to be inseparably connected to these applications. 
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Improvements made over the decades have made the field more interdisciplinary and 
BCI methodology more reliable. Of particular significance was the introduction of machine 
learning techniques at the start of the current millennium (e.g., Blankertz et al. 2002a; Lotte et 
al. 2007; Ramoser et al. 2000). Previously, users of BCI systems were trained to generate 
specific machine-detectable features in their EEG, such as a specific frequency modulation at 
a specific electrode site (Birbaumer et al. 1999). These days, training has shifted to the 
machine, using supervised machine learning based on initial recordings (Blankertz et al. 
2002a). As pattern recognition by the machine replaced operant conditioning of the user, the 
idea was rekindled that this methodology could also be applied to detect and investigate 
spontaneous, automatic brain activity, and that these detections could then be used as implicit 
input to a system (Rötting et al. 2009; Zander et al. 2014). (We use “spontaneous” in its 
biological sense, meaning automatic, instinctive, involuntary, and inattentive; see below for a 
further discussion.) 

Early examples of this can be found in suggestions to use error-related potentials to 
correct classification errors of traditional BCI systems (Blankertz et al. 2002b; Ferrez & 
Millán 2005, 2008). This was also suggested for response errors (Parra et al. 2003) and 
machine errors (Zander et al. 2008a) during human–computer interaction (HCI) in general. 
But it was only in 2008, when BCI enjoyed increased popularity overall, that the approach 
gained widespread attention. The use of BCI methodology for implicit input to benefit 
ongoing HCI was explicitly proposed as a worthwhile research endeavour by two research 
groups at the same conference (CHI 2008, Florence, Italy), independently of each other 
(Cutrell & Tan 2008; Zander et al. 2008a). Zander et al. (2008b) subsequently presented a 
framework formally separating this approach from traditional BCI research and proposed a 
name: passive BCI. The concept found acceptance also among clinical BCI researchers in 
2012 (Wolpaw & Wolpaw 2012). 

A passive BCI (Zander et al 2008b; Zander & Kothe 2011) system derives its output 
from automatic, spontaneous brain activity, interpreted in the given context (Zander & Jatzev 
2012). This interpreted activity is then used as implicit input to support an ongoing task 
(Rötting et al. 2009). Use of the word “passive” here results from a user-centred perspective 
on HCI. It refers to the role of the end user of a system with respect to the BCI: the 
underlying signals being automatic, spontaneous brain activity, it is an inherent and defining 
aspect that the user exerts no effort to actively, explicitly, or voluntarily elicit or modulate 
this activity. Instead, the user focuses on the task at hand while a passive BCI system, in the 
background, monitors their brain activity for informative correlates of relevant cognitive or 
affective states. 

Zander and Kothe (2011) contrast passive BCI with active BCI systems, where the 
brain activity in question is consciously and purposefully modulated in order to control an 
application (e.g., motor imagery BCIs; Pfurtscheller & Neuper 2001), and with reactive BCI 
systems, which rely on brain activity that is evoked by external stimulation but indirectly 
modulated through voluntary attention (e.g., P300 amplitudes modulated by attention shifts; 
Farwell & Donchin 1988). 

Care should be taken when presuming that mental states can be readily categorized as 
“spontaneous” versus “voluntary,” as required by these definitions of BCI systems. Similarly, 
the activity ultimately used by any BCI system may not precisely fit one such category. A 
user who is aware of a passive BCI system might be influenced by the expectations they have 
of that system and voluntarily commit attentional resources to make sure that the 
“spontaneous” activity takes place. A user might also attempt to consciously modulate this 
activity if results are not as expected. The other way around, an active BCI might rely on, or 
inadvertently make use of, brain activity that is not fully voluntarily controlled by the user. 
Meditation, as an example, seems to present an ambiguous mixture of both: it is the 
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voluntary attempt to induce a state that is usually only achieved when contextual factors 
align. 

The active/reactive/passive distinction used here is a user-oriented one and focuses on 
conscious intentions. In meditation, the intended purpose of the activity is relaxation itself, 
not the communication of a state of relaxation for further processing. As a thought 
experiment, we could ask whether the same user behaviour and brain activity would be 
observed if the user was not aware of their influence over a system. If the answer is “yes,” 
then we may say that this behaviour and brain activity represent “natural” human activity. 
The implicit input gathered from it is then dissociated from its function as input. This is taken 
as a core property of the technology discussed in this chapter: the underlying brain activity 
arises from natural human activity that is not purposefully modulated to cater to the BCI 
system. Note, however, that by this measure, the categorisation of a BCI system as (re)active 
or passive ultimately depends on the individual user and not on the system itself. 

Indeed, the example of meditation can in fact also be used for an active BCI—when a 
state of relaxation is induced with the conscious intention of influencing a BCI system—or 
for reactive BCI, when, in addition, external stimuli are used to cue or achieve that state. 

In the last decade, the passive BCI approach (i.e., using natural human brain activity 
as implicit input) has led to research into a range of different directions. Because of the 
general applicability of this approach to a wide variety of applications, a truly comprehensive 
overview is beyond the scope, and not the intention, of this chapter. Instead, we would like to 
discuss a trend that can be observed in recent work and thought related to passive BCI: a 
trend toward increased interactivity between the human user and the machine. 

“Interactivity” denotes “the ability of a computer to respond to a user’s input” (Oxford 
English Dictionary, Oxford University Press 2016). In the following sections, we will 
describe four categories of systems that all take a neurophysiological signal as their input, but 
respond to it with varying degrees of complexity. Each presented category represents an 
increase in interactivity compared to the previous one. Selected examples from past and 
current research are given to illustrate the different categories. A (partially) hypothetical 
example accompanies us throughout the chapter, suggesting how a surgeon in the operating 
theatre might be helped by a system from each category. In sequence, the given examples 
thus illustrate the above-mentioned trend toward increased interactivity. The chapter ends 
with a brief speculation of the future and a summarising conclusion. 
 

3.2 Mental State Assessment 

3.2.1 Introduction 
BCI systems in general, by one definition, consist of three components: input, output, and a 
translation algorithm that produces the latter based on the former (Wolpaw et al. 2000). In 
this definition, input focuses on the measurement of particular aspects of brain activity, which 
reflect or correlate to a specific mental state. The detection of such a mental state (inferred 
from the measured activity) is then translated into a specific computer action (output), for 
example, the movement of a prosthetic arm or the selection of a letter on a screen. 

Passive BCIs are distinct with respect to the exact cause of the mental state that is 
measured, requiring it to arise automatically as the result of a natural perception, activity, or 
thought, without the conscious intention of influencing the BCI system (see the discussion in 
Section 3.1). Emotions, for example, are not usually induced voluntarily but experienced as 
the result of something we perceive, do, or think. Other examples include stress, workload, 
vigilance, arousal, and surprise. 

The measurement of such mental states can be helpful and informative by itself, 
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however, without any computer actions being initiated. Translation, in this case, merely 
quantifies the measurements but causes no further system changes that are reported back to 
the human who is being measured. A subset of traditional BCI methodology can thus be used 
to obtain information concerning a variety of mental states, i.e., for mental state assessment 
(Müller et al. 2008; van Erp et al. 2012; Zander & Kothe 2011). The resulting state 
information can then be analysed and studied further. The user is assumed to be behaving 
naturally, as discussed in Section 3.1. 

To perform such an analysis, i.e. to calibrate such a “state detector” or classifier, 
individual calibration data is usually gathered in experimental environments where an 
operator’s mental state can be carefully controlled and induced. Signal processing, feature 
extraction, and classifier calibration are then performed as per the general BCI approach, in 
order to later be able to assess, from a new recording in a different environment, to what 
extent the operator’s state reflected the experimentally induced one(s). If, for example, a state 
of engagement can reliably be induced experimentally and neurophysiological correlates of 
that state can robustly be detected in those recordings, then an index can be generated that 
quantifies, for other recordings, to what extent these engagement-related features were 
present. This quantification can be done for complete recordings at once, but also moment by 
moment, identifying, for example, at what times during the recording the features were most 
or least pronounced. 

In brief, mental state assessment takes a recording of neurophysiological activity and 
interprets it by producing a quantitative measure of a given mental state. 

To give a hypothetical example of how this could be used, imagine a surgeon is 
presented with three different designs for a new teleoperated surgical robot. The goal is to 
evaluate which of these designs will be most efficient under working conditions. The surgeon 
performs the same operation using all three designs, while her brain activity is registered. 
Features of this brain activity are later compared to different recordings of her brain activity, 
collected during carefully controlled sessions of high and low workload. Based on the 
gathered data, it can be determined which of the three designs evoked the least workload-
correlated brain activity. Furthermore, it may even be seen what phases of the operation saw 
local increases or decreases in such activity. 
 

3.2.2 Examples from the Literature 
Mental state monitoring can be particularly useful where more traditional methods have clear 
disadvantages. In neuroergonomics, “the study of brain and behaviour at work” (Parasuraman 
2003), the use of BCI-based methods in order to assess an operator’s workload levels may 
replace traditional ergonomics methods where the operator would need to be interrupted for 
data collection, for example, to fill out a workload-measuring questionnaire. Workload has 
been widely recognised as a fundamental issue in ergonomics (Wickens et al. 2014), but a 
clash of definitions and constructs and intersubjective differences prevent a uniform and 
objective measurement (Young et al. 2015). BCI methodology may here be able to deliver a 
data-driven approach that circumvents (or complements) conceptual definitions and focuses 
directly on the neurophysiological correlates of those conditions that are to be measured. In 
case of workload, a consistent finding reflects a frontal–parietal theta–alpha asymmetry in 
EEG activity, representing the interaction of the dorsolateral prefrontal cortex and the 
intraparietal sulcus, which are also described as anterior and posterior attentional systems in 
controlled attention tasks (Gerjets et al. 2014). 

For example, Gevins and Smith (2003) used the Multi-Attribute Task Battery 
(Comstock & Arnegard 1992) to simulate controlled working conditions of three different 
load levels and found reliable differences in frontal theta and parietal alpha band power in the 
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continuous EEG recordings. On this basis, they constructed a cognitive workload index that 
could then be used to analyse later recordings. It performed in line with their hypothesis on 
other traditional experimental workload tasks as well as during more natural HCI tasks. 

Using such pre-calibrated indices, mental state assessment can be used to, for 
example, A/B test and compare alternative user interface designs or task conditions with 
respect to the cognitive states they induce. Frey et al. (2014) review how a number of other 
constructs (attention/vigilance/fatigue, error recognition, emotions, 
engagement/flow/immersion) can be used to evaluate user experience during HCI tasks. 

Care should be taken that the recorded reference data are ecologically valid and 
exhibit the neurophysiological features that specifically correlate with the mental state of 
interest and not with other aspects of the recording’s context. For example, Mühl et al. (2014) 
recorded both high and low workload reference data in different affective contexts and 
showed that cross-context training improved the classifier’s robustness. See also Section 
3.4.2 for another approach to make the reference data robust to unrelated influences through a 
careful selection of reference tasks. Gerjets et al. (2014) and Brouwer et al. (2015) present an 
extended discussion of pitfalls and lessons learned in mental state assessment research. 

Rather than recording reference data indicating extreme ends of the spectrum (e.g., 
underload vs. overload conditions), reference data can also be used as a baseline indicating 
optimal conditions (e.g., balanced workload). Zander and Jatzev (2012) used a measure of 
deviation from the baseline as undirected measure of suboptimal performance. Such a 
detected divergence can then be analysed more closely to find out the underlying factors. In 
their paradigm, a goal-oriented, gamified HCI task, the Kullback–Leibler divergence of 
recorded features, increased compared to a baseline measurement in phases where 
participants felt they had lost control over the interaction. This loss of control could perhaps 
constitute a mixture of workload (compensatory actions) and emotional states (frustration), 
contributing to the measured neurophysiological differences. 

Aside from continuous, frequency-based measurements, features can also be extracted 
in the time domain of EEG recordings, looking at event-related potentials (ERPs).  

Evoked responses to presented stimuli are said to reflect neuronal processing of those 
stimuli, and the ERPs’ morphology may be modulated by affective and cognitive processes 
(Luck 2014). For example, an alternative workload measurement method is to pose an 
oddball paradigm as a secondary task (e.g., to count the number of relatively rare high-pitch 
tones among a monotonous sequence of low-pitch tones), but instruct participants to focus 
attention primarily on another, primary task. The more cognitive load is demanded by the 
primary task, the less attention can be invested in the secondary task. This decreased attention 
is then reflected in an amplitude decrease of the P300 component in the ERP following target 
stimuli in the oddball task (Kok 2001). 

Frey et al. (2016) used both a continuous EEG-based measure of workload, calibrated 
using an experimentally controlled variant of the n-back task (Kirchner 1958), and a 
secondary oddball task to measure attention. They found that both measures differ 
significantly across difficulty levels in a 3D wayfinding game, albeit with different 
sensitivities. 

ERP components may also reflect differences in higher-level cognitive processing. 
This assumption is the basis of ERP-based guilty knowledge tests, where the goal of the 
experiment is to find out whether or not the participant possesses any information that they 
wish to conceal. As such, guilty knowledge tests are a type of lie detector. Participants are 
shown a series of stimuli, some related to the concealed information (e.g., the used weapon in 
a crime), others neutral (other weapons, random objects). Should the participant exhibit 
deviating responses to the related stimuli compared to the neutral ones, then this could be 
taken as a clue that the participant does possess some information concerning the case in 
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question. Based on differences in their ERPs, Farwell and Donchin (1991) devised a system 
that could accurately determine for 87.5% of participants whether or not they had information 
concerning mock espionage scenarios that the participants were exposed to as part of the 
experiment. Ongoing developments in BCI and machine learning algorithms continue to be 
applied to improve performance in this field (e.g., Abootalebi et al. 2009). 

Similar to workload, measures of a product or service’s quality, attractiveness, or 
potential value to the user are traditionally gauged using questionnaires or interviews, and 
there is difficulty with respect to conceptual definitions and objective values. In order to 
elucidate consumer decisions, marketing researchers have turned to neuroscientific and BCI-
based methodology to investigate human consumption from a neurophysiological 
perspective—neuromarketing (Lee et al. 2007). For example, Knutson et al. (2007) 
investigated neural correlates of two often opposing forces in purchase decisions: a product’s 
attractiveness and its price. In a functional magnetic resonance imaging study, they found 
discriminative activity in separate cortical areas for these two product attributes. Based on 
features extracted from the nucleus accumbens and the mesial prefrontal cortex, they were 
subsequently able to develop an index predicting purchase behaviour as exhibited by 
participants during the experiment. 
 

3.2.3 Reflection 
The examples of mental state assessment given here all use an initial recording of brain 
activity as their basis and then apply signal processing and classification or other predictive 
techniques in order to obtain a continuous quantification reflecting mental states or changes 
in mental state. By using brain activity, these approaches exhibit a number of relevant 
differences compared to other methods that attempt to do the same thing (e.g., questionnaires, 
interviews, introspection, thinking aloud). Brain activity provides a continuous, potentially 
unobtrusive source of data, and its recording does not interfere with the state to be measured. 
It enables a functional, data-driven approach to individual, subject-specific state assessment. 
This can provide a possible alternative to sometimes competing and contradictory theory-
driven approaches. It does, however, require special care to interpret the resulting data and 
validate the measures taken: in data-driven approaches, correlations may be found that are not 
neurophysiologically plausible—for example, co-varying neural responses to confounding 
variables may show up in cortical areas unrelated to the state of interest, or models may be 
overfitted on the available data (e.g., Babyak 2004; Haufe et al. 2014). Another reason to use 
neurophysiological measurements may be when the information of interest cannot be 
obtained otherwise, for example, when a continuous recording and quantification is required, 
or when the human’s own indications may be biased. 

Mental state monitoring is an essential element in (passive) BCI systems but does not 
constitute such a system in and of itself. As per the abovementioned definition of BCI 
systems, the third component—output—is missing: the measurement does not trigger any 
actions, nor does it influence any system, beyond the measurement itself. Rather, the 
measurement itself is the goal of the use of the technology, as an additional instrument, to be 
used for later post hoc analysis. 

Section 3.3 will present examples of passive BCI systems that translate the 
measurements into system actions in real time. These actions simultaneously provide 
feedback to the participants, adding a first element of interactivity to the system. We will also 
see that this feedback has inherent advantages for the validation of the measured user state. 
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3.3 Open-Loop Adaptation 

3.3.1 Introduction 
HCI describes the interaction between one or more human users and a technical system 
(Preece et al. 2015). In a typical interaction cycle, an operator (user) gives a command to a 
machine, which processes the command and gives corresponding feedback to the operator. 
“Feedback” here denotes information about an action returned to the initial causing source of 
the action—i.e., a response from the computer back to the user. This can be either the effect 
of the action itself or a separate informative signal. 
 Even modern-day interaction techniques, e.g. touch screens and virtual reality 
controls, in essence still rely on the same principles as traditional techniques: in order to 
provide input to the computer, users explicitly activate one element after another, in 
accordance with the computer’s logic (keyboard presses, mouse clicks, virtual buttons, 
menus, sliders, etc.). “Explicit” here reflects that the action was voluntarily executed with the 
conscious and sole intention of providing input to the computer. 

 Passive BCI can provide a fundamentally different, implicit input channel. “Implicit” 
here is the antonym to explicit and indicates that the input in question was generated without 
the source’s voluntary intention of doing (merely) that (Rötting et al. 2009; Schmidt 2000; 
Zander et al. 2016). Passive BCI can be embedded into the HCI cycle by taking mental state 
assessments as implicit input, processing this input accordingly, and providing corresponding 
feedback to the user. This feedback creates interactivity with respect to the BCI: the computer 
now has the ability to respond to the user’s implicit input.  
 In the simplest case, one interaction cycle (input–processing–feedback) can be viewed 
in isolation, following a simple one-time stimulus–response logic. Whenever a specific input 
is given to the machine, it performs one and the same action. The action serves only to 
comply with the input as it was given. This is referred to as open-loop adaptation. 
 Systems from this first category of adaptive applications apply mental state 
assessment to obtain a measure of a mental state online and respond to certain states with 
specific pre-programmed actions in an open-loop fashion. 
 For our surgeon, the online detection of high phases of workload could, for example, 
automatically trigger the system to switch on an indicator light. This communicates to the 
other members of the surgical team that the surgeon is not to be disturbed with lower-priority 
interruptions (Zander et al. 2017b). 
 

3.3.2 Examples from the Literature 
One mental state that has received particular attention in the context of general HCI is the 
perception of errors. Partially due to the artificial and limited nature of traditional interaction 
techniques (Suchman 1987; Tufte 1990), mistakes are made during ongoing HCI, resulting in 
frustration, loss of productivity, or, in safety-critical environments, potentially worse (Reason 
1990). Upon perceiving the feedback indicating the error, or even already upon executing the 
erroneous action itself, the human user recognises that a mistake has been made. Such 
conscious error perception elicits a much-researched neuroelectric response known as the 
error-related negativity (ERN; Gehring et al. 2012). If a system could detect such a negativity 
in its human user, and link it to a specific action or feedback signal, it could automatically 
undo the apparently perceived to be erroneous action or even learn to prevent it in the future. 
 For example, Parra et al. (2003) report a 21.4% average reduction (albeit ranging from 
−6 to +49%) in errors made by the combined human–machine system on a speeded reaction 
task, which is the traditional experimental task to elicit response errors. Here, a passive BCI 
system calibrated to detect an ERN after each human response informed a decision to 
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override the human input. Note that, as the −6% figure for one participant indicates, this can 
lead to an increase in errors when the passive BCI itself makes mistakes. 
 Testing to what extent these findings would apply to more realistic HCI control 
scenarios, Iturrate et al. (2012) found similar detectable responses to errors in a series of three 
experiments that represent essentially a similar task but with different degrees of realism: 
abstract cursor control, simulated robot control, and actual robot control. Error-related 
responses have also been found in different HCI contexts and modalities, for example, based 
on auditory (Zander et al. 2011a) and tactile (Lehne et al. 2009) feedback. 

Being reliable in various, realistic contexts, such responses can be used to undo or 
otherwise correct for errors during HCI, as, for example, Zander et al. (2010) demonstrated 
using passive BCI error correction support in a gaming context. 
 ERN detection has also been used by Kreilinger et al. (2012) to inform the continuous 
motion of a prosthetic arm. Blinking light-emitting diodes (LEDs) would inform the user 
whether the arm would continue or stop moving within the upcoming second. When a LED 
indicating continued movement elicited an error response in the user, this could be interpreted 
as a passive input command to stop moving, and vice versa. 
 The use of another type of cognitive state was proposed by Protzak et al. (2013) and 
further investigated by Shishkin et al. (2016) to support gaze-based HCI. In gaze-based HCI, 
an eye tracker is used to follow the user’s gaze, which can thus be used to control, for 
example, a pointer on a screen. To select or activate an item, often a dwell time is used: if the 
cursor remains for a certain amount of time on one and the same item (i.e., if the user looks at 
it for that long), it is activated. This can lead to a high number of false activations, as not all 
gazes are intended for interaction. Both Protzak et al. (2013) and Shishkin et al. (2016) 
compared brain activity following gaze fixations on an item under two conditions: one where 
interaction was intended (gaze-based control was enabled), and one where it was not (gaze-
based control was disabled). They found significant amplitude differences in the ERP 
following control versus no-control fixations. Shishkin et al. applied a classifier trained on 
these differences online, in a gaze-controlled selection task. Although their classification 
system achieved insufficient sensitivity values to fully replace the “click” of a mouse, this 
may one day be possible. A computer that can reliably detect its user’s intentions in such a 
way could greatly reduce the amount of explicit commands required from the user. 
 BCI has also been used in gaming environments to effect changes in the ongoing 
interaction. For example, van de Laar et al. (2013) incorporated BCI into an online role-
playing game. Depending on parietal alpha band power, assumed to reflect the player’s state 
of relaxation versus tension, the character they controlled would shape-shift into either an elf 
(relaxation) or a bear (tension). These character forms had different functional abilities, thus 
affecting the user’s strategy in the game. Note that, in the cited case, this was a form of active 
BCI, because the experimenters explicitly instructed the participants to control their state of 
mind in order to consciously shift between shapes. However, since the chosen features 
(parietal alpha) do naturally correlate to relaxation, this could also be an exemplary 
implementation of open-loop adaptation based on passive BCI. This highlights the issue 
discussed in Section 3.1: whether or not a system is active or passive does not depend on the 
implementation itself but ultimately on the user’s behaviour. For similar examples, see Ilstedt 
Hjelm and Browall (2000), Ilstedt Hjelm (2003), and Zander and Krol (2017). 
 

3.3.3 Reflection 
Open-loop adaptive systems use a measurement of the user’s state as implicit input in parallel 
to an ongoing (inter)action. These can be transient states such as error perception or 
interaction intent, which should then be carefully tied to the context that evoked them, or 
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more constant states such as moods or other psychophysical conditions, which will then also 
have a more constant effect on the interaction. As such, we see that the latter is used to 
implicitly control an application’s mode, whereas the former is used to provide more timely 
implicit executive commands. The use of passive BCI methodology in these interactive 
systems either supports the user by replacing commands that otherwise needed to be provided 
explicitly or provides an extra dimension of experience to the interaction that would not have 
been possible using traditional input modalities. 

An analysis of the effects of the BCI on the interaction can also serve as a validation 
of the system. For example, a quantification of errors compensated or correct selections 
provides a clear measure of the efficacy of the system. As mentioned in Section 3.2.3, 
though, care should still be taken that the implicit input underlying any performance 
improvement is neurophysiologically plausible. 
 The examples mentioned here use passive BCI for implicit human-to-computer 
communication. The implicit input is processed immediately, corresponding actions are 
performed, and the feedback given to the users completes the interaction cycle. This, 
however, is also the full extent of the interactivity at this point: the effects do not reach 
beyond the current interaction cycle, as there is no closed control loop influencing the next 
cycle. Both the executive and mode switching actions represent open-loop control, where 
single, independent state detections result in single, fixed actions from the computer. More 
interactive applications exhibit closed-loop control, where the given feedback also influences 
the user, as we shall see next. 
 

3.4 Closed-Loop Adaptation 

3.4.1 Introduction 
In closed-loop systems, output is fed back to the system as new input. In other words, the 
generated output influences the next cycle. In case of an elementary human–machine system 
based on passive BCI, the ultimate source of input is the human user’s mental state. One 
method to implement a closed loop is thus to have the produced feedback cause a change in 
the user state. By influencing the mental state that is measured, the system influences its own 
next input. 

One motivation for such an implementation may be to promote and sustain a desirable 
psychological state; for example, an optimally supporting balance of factors, or a state of flow 
(Csikszentmihalyi 2008). The adaptive loop may, for example, be programmed to promote a 
state of positive engagement in order to improve performance. This type of system could 
modify the demands of the task to maximise the user’s motivation and enjoyment. When 
there is a clearly defined and unambiguously operationalised psychological state that is 
desirable, then the system can use its adaptive logic and feedback to manipulate the state of 
the user until the desired target state is reached. 

This increases the interactivity of the system in the sense that it is now able to respond 
purposefully, as well as able to monitor the effect of each response. The given response 
attempts to qualitatively influence the condition of the ongoing interaction. 

Thus, closed-loop adaptive systems apply mental state assessment to obtain a measure 
of a mental state online and respond to certain states—or changes in states—with actions that 
influence that same mental state. 

We can again turn to our earlier example of workload in the operating theatre to 
illustrate this category of applications. When a system detects that the surgeon is currently 
under high load, it can attempt to directly compensate for this by assuming certain tasks on 
behalf of the surgeon. By relieving the surgeon from some of her tasks, the system 
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purposefully attempts to lower her load. We will see a similar example from the literature in 
more detail, described next. 

 

3.4.2 Examples from the Literature 
As mentioned in Section 3.2.2, a measure of workload is important in ergonomics research in 
order to inform design decisions. An adaptive system, however, could contain a range of 
options that would otherwise be decided upon by the designers and switch between them 
during online operation depending on current measures of workload. One such option range 
is the level of automation: a machine can be operated entirely by explicit commands from the 
operator, or support the human operator to various degrees, up to assuming full autonomy and 
leaving the user in a mere supervisory role (see Parasuraman et al. 2000 for an overview and 
framework describing these options). The purpose of automation is to reduce operator mental 
workload and alleviate fatigue during sustained performance; however, use of automation is 
associated with negative consequences such as the out-of-the-loop problems and decay of 
skilled performance (Endsley & Kiris 1995). Striking the right balance is important to the 
well-being and performance of the operator, but the appropriate level of automation varies 
with fluctuating operator capacities and varying task demands. Therefore, adaptive 
automation (Byrne & Parasuraman 1996) attempts to match the level of allocation to the 
current capacity of the operator, measured in real time. 

Kohlmorgen et al. (2007), for example, performed EEG measurements during 
highway driving. Aside from controlling the vehicle, two additional tasks were given to the 
participants that mimic human–car interaction (an auditory response task) as well contextual 
distractors during driving (a mental calculation task and a listening comprehension task). All 
these together defined high-workload phases, which were compared to low-workload phases, 
where no contextual distractors were present. A classifier calibrated to distinguish these 
phases was later applied in an online driving condition such that high workload detection 
resulted in the automatic temporary suspension of the auditory response task. The mean 
performance on this response task significantly improved due to this intervention. 

Similar adaptive logic can be applied to intelligent tutoring systems designed to 
deliver educational material in a way that sustains the engagement of the student. For 
example, the pacing of the learning process can be adjusted dynamically in order to sustain 
motivation without inducing fatigue, frustration, or information overload. In particular, 
working memory load is said to need careful management for an optimal learning experience 
(Cowan 2014). 

Gerjets et al. (2014) review theory and practice with respect to online working 
memory assessment and present two studies in the context of adaptive learning environments. 
Special care was taken to select experimentally controllable calibration tasks. A combination 
of two tasks was used, as these tasks both targeted the same cognitive resources that were to 
be measured during realistic learning exercises, while at the same time these tasks differed 
with respect to their demand on executive resources. As such, Gerjets et al. attempted to 
develop a classifier that could detect working memory load independent of other task 
properties. Using this classifier, a classification accuracy of 73% was achieved on single 
trials of word algebra tasks. Their aim is to apply this classifier in an online adaptive 
environment, catering to current cognitive abilities of the student. 

Such an online application has been presented by Yuksel et al. (2016): they used 
functional near-infrared spectroscopy (fNIRS) first to differentiate between participants’ 
brain activity playing easy and hard piano pieces and then to detect their cognitive workload 
online during the learning of a new piece. The adaptive tutor first presented only one line of 
musical notes and added the next line only when workload levels indicated that the previous 
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step had been learned to a sufficient degree. Yuksel et al. report significant increases in 
performance and learning speed using the fNIRS-based adaptive system as compared to self-
paced learning. 

Ewing et al. (2016) applied the concept of closed-loop adaptation to a game, Tetris, 
adjusting the game’s speed in order to maintain a level of optimal engagement. They 
implemented different adaptive behaviours (i.e., more or less responsive), but found little 
difference between them. They discuss the issue of finding an appropriate benchmark: taking 
a manual condition as control, as they did, may provide an inherent difference in user 
experience that is not related to the exact behaviour of the closed-loop adaptive system. A 
better control may be to compare this adaptive system to alternative methods of adaptation, 
for example, pre-programmed, random, or “yoked” (responding to the user state of another 
individual). Similar to the earlier distinction between mode switches and executive 
commands, the examples given above aim to achieve a constant, optimal state in the user, but 
adaptive systems can also effectuate short-lived closed feedback loops in order to achieve a 
one-time cognitive state. 

Kirchner et al. (2013) suggest closed-loop implicit control of an alarm system, making 
use of BCI methodology to assess whether or not the alarm has been perceived and/or the 
user intends to act on it. Based on this information, the system could then decide to re-sound 
the alarm with increased saliency until it has been perceived. A state of nonperception would 
thus trigger new feedback until a state of perception would be observed. Kirchner et al. report 
accurate classification rates of perceived versus missed alarms during a demanding robotic 
teleoperation scenario. In another study, they used these as measures of current load, 
reversing this logic: nonperception of new instructions indicated that the user was occupied 
with previous instructions. The new instructions were then delayed to avoid distractions and 
promote adequate levels of engagement and performance (Kirchner et al. 2016). 
 

3.4.3 Reflection 
Direct access to a quantification of a certain mental state enables systems to monitor and, 
with appropriate feedback, influence this state also in a closed loop. This approach can be 
used to promote and sustain desirable mental states or indeed to mitigate an undesired state. 
The goal of this closed-loop control can be to achieve a certain equilibrium with respect to 
the state of interest or to push for a given threshold. In the former case, the system’s potential 
influence may need to be bidirectional, allowing for both changes that encourage and changes 
that alleviate the target state. 
 When considering what is a closed-loop system and what is not, special attention must 
be given to the exact state that is targeted, which may be related to but different from the state 
that is measured. For example, error perception, as a transient state in the form of an error-
related potential that lasts for less than a second, cannot necessarily be used as such to define 
a closed-loop system. This would be different, however, if this transient mental state can be 
interpreted in the given context as, for example, being indicative of a more persistent state of 
general dissatisfaction. 
 A closed feedback loop represents increased interactivity because the feedback in this 
case does not merely function as an informative response to the user, but in fact purposefully 
acts upon the user. The feedback intends to influence the user, as the user’s commands intend 
to influence the system. Where in our earlier examples we saw implicit human-to-computer 
communication, now we could speak of an implicit dialogue between both agents, 
cooperating more closely in order to achieve common goals. 
 This cooperation as exemplified here is still limited by the amount of information 
available to the system and the simplistic logic of the single loop—for example, the one-
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dimensional measure of workload can only have a one-dimensional adaptation of automation 
levels. A next step up would need to tackle the question how systems can achieve a more 
complex adaptive, cooperative behaviour based on the limited information passive BCI 
methodology can obtain at any single time. One such method will be discussed next. 
 

3.5 Automated Adaptation 

3.5.1 Introduction 
Analysis of ongoing brain activity can give insight into momentary mental states, but by 
itself, not into their likely causes or the appropriate responses. In the above-mentioned 
adaptive systems, the context is controlled and specific enough to reasonably assume that, for 
example, workload is caused by task demands, and increased automation will lead to a 
reduction in measured load. The interactive functions, however, are limited to these specific 
conditions. 
 Human–human interaction, the benchmark for natural communication and 
cooperation, relies heavily on a shared understanding of the world, the situation, and the 
communication partner—a shared model of appropriate behaviour and how things are 
(Fischer 2001). In this, however, HCI is heavily asymmetrical: the human user can potentially 
be appraised of all details concerning the state of the computer, but hardly any such 
information is available vice versa (Suchman 1987). For a computer to understand its user, it 
needs information and input that goes beyond the bare necessities for its operation. The 
applications discussed in this chapter so far provide such information, but use it for pre-
programmed one-dimensional response logic—they do not “understand” the user, that is, they 
build no model of higher, more abstract aspects of the user’s cognitive or affective behaviour. 
A better-informed system has increased ability to respond appropriately to the user; even to 
act on the given, known information before any new input is received. This thus constitutes 
an additional increase in interactivity: now also the system, and not merely the human user, 
can autonomously decide to act. 

In this final category of automated adaptive applications, the systems apply mental 
state assessment alongside other methods of information gathering and build a model to 
represent aspects of the user’s cognitive or affective responses. It is this automatically 
generated model, finally, that serves as a basis for the system’s own autonomous behaviour 
and adaptations—not (merely) the system’s current input. 
 Our surgeon’s load may have been consistently detected to increase beyond 
sustainable levels after 1 hour when using a specific teleoperated robot. Having learned this, a 
well-informed system could call for an additional assistant ahead of time. 
 

3.5.2 Examples from the Literature 
Zander et al. (2014) and Zander et al. (2016) used single-trial detections of error-related brain 
activity not to immediately correct perceived mistakes, but to learn, over time, what strategy 
the user followed to subjectively make the distinction between errors and non-errors. To that 
end, the system exhibited different behaviours and learned which behaviours evoked positive 
and which evoked negative responses. These responses were generated in the medial 
prefrontal cortex, associated with a fundamental source of human intelligence: predictive 
coding (Hawkins & Blakeslee 2007). It thus built a model of the user’s higher-level 
preferences with respect to the presented behaviours. Already during this learning process, 
the system adapted to exhibit behaviour most likely to be perceived positively. 
 Specifically, this approach was applied to two-dimensional cursor control. A cursor 
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on a computer screen initially moved randomly. Movements in some directions led to 
positive responses, while movements in other directions evoked negative responses. Over 
time, the system learned the pattern behind these responses and, as such, learned where the 
user wanted the cursor to go. The system could thus steer the cursor toward the intended 
target. 
 Extending their earlier-mentioned experiments, Iturrate et al. (2015) demonstrated a 
similar principle using a robotic arm. Participants observed its movements while their error 
responses were tracked in order to inform the arm of appropriate and inappropriate behaviour. 
Based on the participant’s automatic responses, the system learned using a process of 
reinforcement and elimination which path or control policy was currently preferred by the 
participant. To that end, all possible control policies were known to the system upon 
initialisation, and it then attempted to find a best match between these policies and the 
participant’s responses. The use of policies as opposed to directions allows the system to 
account for the arm’s changing relative position to the target, and would potentially be able to 
deal with obstacles or other more complex arm behaviour. 

This implementation thus differs from the one used by Zander et al. (2014) and 
Zander et al. (2016) with respect to the form of, and the kind of information contained within, 
the model, but uses the same general principles of automated adaptation.  
 

3.5.3 Reflection 
In the two examples given in this section, rather than either having direct consequences or 
not, mental state measurements were stored along with a description of the contexts (here: 
computer actions) during which they were observed. As such, a model was created that 
correlated user states with different contexts. This model then served as a basis for the system 
to decide future actions. 

These examples were again limited to their respective environments (cursor/arm 
movements in a limited number of directions), but the principle can be envisioned to apply in 
a broader sense. With a reliable measure of e.g. satisfaction versus dissatisfaction (as, e.g., in 
Zander et al. 2016), as well as an accurate recording of relevant context variables (Zander & 
Jatzev 2012), a hypothetical ubiquitous passive BCI system could generate such a model for a 
large number of aspects in a user’s daily and working life. By collating contextual factors 
with measures of the user’s mental state, the computer learns to understand this user in much 
the same way as we humans learn from our own experiences. Subsequently, given a known 
context, the ubiquitous computer could execute that action that has been observed to be most 
likely to satisfy the user in that context. 

Although the ultimate goal of this hypothetical system would be the same as of the 
earlier-mentioned adaptive automation, i.e. to promote and sustain a desirable state, the 
methods by which this can be achieved are not set: the parameters of adaptation are learned 
automatically by the system itself, on the basis of a continuously updated model of its user. 
 For a large part, it is the understanding (i.e., the models) that we have of our social 
and physical context that allows us humans to behave appropriately in various contexts. We 
have started to build these models as soon as we were born and continue to update them as 
long as we are capable. For this, we use all information available to us, not just the 
information that others have explicitly deemed relevant to us. By giving computers access to 
more information and giving them the freedom to build their own models of their users and 
the context, a form of artificial intelligence may be created that may finally be seen as an 
autonomous, interactive agent, just as we see ourselves. 
 In a far-reaching, hypothetical case of a learning, closed-loop, automatically adapting 
system, we could imagine a system providing what we want before we can act upon those 
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desires ourselves. With this autonomously operating system originally having learned from 
our own subjective responses to various actions and contexts, it may at some point become 
unclear who was the ultimate initiator of the action, by whose authority the action was 
executed, or who, in fact, “acted.” As the lines separating the two interactive agents, human 
and machine, become blurred, merely the interaction itself remains. 

Given also ethical deliberations with respect to, for example, data ownership, 
informed consent, the potentially harmful influence of machine over man (the same technique 
could be used to promote an undesired state, resulting in the computer actively working 
against the user), and outcome responsibility, it is prudent to aim to strike a balance between 
the two agents’ influence on each other. Users should always have access to full information 
concerning the system’s models, processes, goals, and actions. Users should also have 
ultimate control over, and ownership of, data that are derived from their physiology 
(Fairclough 2014). From a cooperative perspective, the best balance may be one where both 
agents get to optimally use their strengths while their weaknesses are mitigated by the 
strengths of the other, while keeping these domains formally separate. 
 

3.6 Summary and Conclusion 

In this chapter we have discussed potential applications that build up on the ability to perform 
real-time analyses of neurophysiological data, first demonstrated as brain–computer 
interfacing by Jacques J. Vidal. In 1973, envisioning future progress, Vidal wrote that 
“mental decisions and reactions can be probed, in a dimension that both transcends and 
complements overt behaviour” (Vidal 1973). This statement appears to accurately capture the 
motivation of passive BCI research today, in its various forms of applications. In this chapter, 
these were divided into four distinct categories, based on their level of interactivity. 
 One category of applications, mental state assessment, uses the quantification of state-
specific brain activity as a measurement, for example, to replace or support other 
measurements (e.g., questionnaires, behavioural data). This approach can provide data 
unobtrusively, can be individually calibrated, and may be able to access information that 
would otherwise remain hidden. An example from this category is the generation of a 
workload index based on brain activity, in order to assess the amount of resources that 
different instruments demand from the surgeon operating them. 
 A second category of applications, open-loop adaptation, uses the obtained 
measurements to inform an open-loop adaptation of the software. Using online state 
assessment, these systems can respond in real time to the detection of certain states. 
Continuing the above example, a warning light could switch on in an operating theatre when 
it is detected that the surgeon is currently experiencing high load. 
 In a further category of applications, closed-loop adaptation, the software adaptation 
is designed with the explicit purpose to also effect a user adaptation, creating a closed control 
loop. This provides the system with the ability to not merely detect but also act upon the 
detected mental states. To keep the surgeon’s workload at a sustainable level, for example, 
certain systems and operations in the theatre may be adaptively automated. 
 Finally, a category of applications was described where the control logic of the system 
exceeds predetermined single-loop control: automated adaptation. The system is given the 
autonomy to learn and adapt based on a larger amount of information, coupled with a 
measure of the user’s mental state. This also grants the system the ability to act autonomously 
for, or on behalf of, the user. For the surgeon, an additional assistant may automatically be 
called as the system predicts workload will exceed otherwise manageable levels. 
 The first category is neither BCI nor interactive but serves as a basis for the three 
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following categories. Their interactivity shows in their different abilities to respond to the 
given input. Since effective passive BCI systems are unobtrusive and inconspicuous, these 
systems’ responses may be similarly hidden. It is for this reason that we refer to adaptation, 
using this as a more generic term that includes traditional feedback (e.g., the movement of a 
prosthetic limb) but also other ways to process the given input (e.g., updating a user model) 
or act on the basis of previously learned information. When adaptation is ultimately based on 
neurophysiological measures, we refer to these systems collectively as neuroadaptive 
systems (Zander et al. 2016). 

The different adaptive behaviours are not mutually exclusive. An automated 
adaptation system might, for example, predict what a user intends to do and execute that 
action in advance, but then, in an open-loop fashion, undo the action when it is detected that 
the prediction was in error. 

The here-presented categorisation emphasises the observable path of passive BCI 
applications toward increased interactivity. 

The investigation of truly interactive systems, in particular based on natural human 
brain activity, can only be properly researched and developed in natural, real-world 
interactive settings. The well-controlled experimental conditions will at some point no longer 
be sufficient to make significant progress. Luckily, easily applicable, comfortable electrodes 
with sufficient signal quality and stability are being developed and continue to be improved 
(e.g., Goverdovsky et al. 2016; Mullen et al. 2015; Zander et al. 2011b, 2017a). Increased 
interest from high-profile commercial ventures is currently providing an effective 
development infrastructure and budget, at least for specific business interests—but the field 
as a whole may benefit, since the underlying issues are the same. Finally, when classifiers can 
be constructed that are independent of the human users and applicable across contexts, their 
universal usability will provide easy access to mental state assessment, boosting its usage 
(e.g., Krol et al. 2016; Wei et al. 2015; Zander 2012). When these development reach 
maturity, real-world implementations of the adaptive systems discussed here may seriously 
and dramatically alter the many human–system interactions that dominate our everyday lives 
(McDowell et al. 2013). 
 
This chapter described a trend toward increased interactivity in past and current passive BCI 
research and development. The history of HCI as a whole, too, can be seen in light of 
increased interactivity. In early computer systems, input commands were written beforehand 
and given to the system as complete programs. This either resulted in the successful 
processing of the program, or, quite bluntly, it did not. It was only later that humans were 
given real-time control over the system, through, for example, immediate processing and 
interrupt options (Suchman 1987). This provided the first interactive human–computer 
experience, albeit with ultimate agency solely with the human user. A next step toward 
interactivity thus appeared to be to give agency also to the computer—allowing it to adapt 
itself and execute commands that the user did not explicitly ask for. Passive BCI systems, 
discussed here in their various forms, can provide a source of information to make this 
computer agency in line with the user’s intentions. It can provide this next step in human–
computer interactivity, and, as the categorization used here intends to show, may provide the 
ones after that as well, in the form of advanced neuroadaptive technology. 
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