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Abstract

A model-based approach for cognitive assistance is proposed to keep track of pilots’ changing

demands in dynamic situations. Based on model-tracing with flight deck interactions and EEG

recordings, the model is able to represent individual pilots’ behavior in response to flight deck

alerts. As a first application of the concept, an ACT-R cognitive model is created using data from

an empirical flight simulator study on neurophysiological signals of missed acoustic alerts. Results

show that uncertainty of individual behavior representation can be significantly reduced by com-

bining cognitive modeling with EEG data. Implications for cognitive assistance in aviation are dis-

cussed.
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1. Introduction

Cognitive assistance is about providing the right information at the right time. The

quality of support that can be provided depends on what is and can be known about the

task environment and the operator’s cognitive processes. On the flight deck, environment

and task dynamics make it hard to predict pilot behavior and cognitive states as a func-

tion of the environment. For such complex tasks, very extensive models would be needed

to incorporate all sources of variability for explaining individual performance in a deter-

ministic fashion. Furthermore, individual differences such as experience on the aircraft

type can make explaining and predicting individual performance very challenging.

Rather than modeling all potential sources of variability, simpler models are needed to

anticipate pilot behavior. Such models need to be able to continuously update information

about the dynamics of the environment and task as well as individual differences in real

time to anticipate pilots’ individual needs for assistance. The implementation of such

capabilities for cognitive assistance should draw inspiration from how support according

to anticipated individual needs and actions is accomplished in human–human interactions.

1.1. Anticipating individual behavior

In cooperative tasks, the ability to act together is crucial, even in simple activities such

as washing the dishes or sharing a bicycle lane with other cyclists. According to Sebanz,

Bekkering, and Knoblich (2006), joint action can be regarded as any form of social inter-

action where two or more individuals coordinate their actions in space and time to bring

about a change in the environment. A successful joint action depends on the abilities (a)

to share representations, (b) to predict actions, and (c) to integrate predicted effects of

one’s own and others’ actions.

The process of joint attention, that is, monitoring another individual’s perceptual pro-

cesses and directing one’s own attention to the same objects and events, provides a basic

mechanism for sharing representations and achieving “perceptual common ground”

(Sebanz et al., 2006). Together with detailed knowledge about the cooperator’s task, this

allows one to make educated predictions of another’s cognitive dynamics and overt

actions (Vesper et al., 2016). Then, the observation of actions both helps in validating

predictions and understanding others’ cognitive states. For example, studies have shown

that observation of an action leads to activation of a corresponding representation in the

observer’s action system (e.g., Calvo-Merino, Gr�ezes, Glaser, Passingham, & Haggard,

2006; Gr�ezes, Armony, Rowe, & Passingham, 2003).

Cognitive models can be used to provide cognitive assistance on the flight deck with

capabilities such as anticipation of actions in cooperative tasks similar to those of

humans. Most cognitive models,however, are built to simulate average user behavior

under controlled conditions instead of individual performance in complex tasks (Rehling,

Lovett, Lebiere, Reder, & Demiral, 2004). Representing individual behavior in naturalistic

settings requires dealing with multiple sources of variation such as inter-individual
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differences (e.g., architectural and knowledge differences; Taatgen, 1999) and uncon-

trolled external factors of the situation. For example, when modeling pilot performance in

commercial aviation, different levels of experience and changing weather conditions

would need to be considered. A cognitive model that is able to keep track of the opera-

tional context and an individual user’s cognitive dynamics can serve as the basis for cog-

nitive assistance in operations (Zhang, Russwinkel, & Prezenski, 2018).

1.2. Cognitive modeling of uncertainty

In naturalistic settings, uncertainty about the individual user’s cognitive state needs to

be negotiated when making decisions about how and when to support. Uncertainty can be

divided into (a) epistemic uncertainty that is caused by a deficiency in knowledge and (b)

aleatory uncertainty induced by the inherent variability of events (Kiureghian & Ditle-

vsen, 2009). While acquiring or providing additional information can decrease the epis-

temic proportion of uncertain situations, aleatory uncertainty cannot be reduced but needs

to be managed carefully instead. In experimental psychology, distinct coping strategies

associated with each type have been identified in human decision-making under uncer-

tainty: When faced with epistemic uncertainty, information search or exploration pro-

cesses are elicited, while aleatory uncertainty is usually met with exploitation behavior,

that is, relying on the most probable outcome to maximize reward (Fox & €Ulk€umen,

2011). This distinction between uncertainties and the associated behavioral responses

have both architectural (a) as well as cognitive (b) implications when building models for

assistance to individual user behavior.

(a) When trying to represent individual behavior, epistemic uncertainty could be gener-

ally reduced by including more information about the user and the world in the model. In

real-world or realistic settings, however, environmental dynamics might be hard to cap-

ture, and substantial effort would be required for deterministic modeling. Regardless of

the feasibility of such complex modeling, understandability of the model would need to

be traded in for completeness, also known as Bonini’s paradox (Dutton & Starbuck,

1971). Also, such complex models would be hard to verify (Roberts & Pashler, 2000)

and might generalize poorly due to the large number of free parameters (Vandekerck-

hove, Matzke, & Wagenmakers, 2015). Alternatively, leaner models would need to emu-

late information search in the face of epistemic uncertainty. A number of methods have

been used to reduce epistemic uncertainty in modeling individual behavior in complex

tasks, such as pre-test scores as predictors (Rehling et al., 2004), model-tracing (Fu et al.,

2006), inserting physiological data on user’s workload into the model (Putze, Schultz, &

Propper, 2015), and dynamic adjustment of parameters with pre-computed lookup tables

(Fisher, Walsh, Blaha, Gunzelmann, & Veksler, 2016).

(b) When providing assistance, assumptions about the pilot’s cognitive state need to be

made. Behavioral (including physiological) measures of the pilot’s functional states can

include contextual information and help in narrowing down the problem space in terms

of his or her cognitive state. For a cognitively plausible model of assistance, the model

should avoid to make guesses in face of epistemic uncertainty and consult additional
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sources of information on the pilot’s state instead (Fox & €Ulk€umen, 2011). Similarly,

model-based assistance should follow the path with the greatest prospect of success and

not engage in exploration behavior in situations characterized by aleatory uncertainty.

1.3. Cognitive assistance in aviation

Increasing automation complexity and task dynamics require pilots to both keep track

of the aircraft’s state and changes in the situation. While following up with automation

modes and transitions puts high demands on pilots’ memory, dynamic situations ask a lot

of attentional resources to perceive and process incoming alerts and messages on the

flight deck. Inattentional deafness has been shown to cause performance drops in the

cockpit (Dehais, Roy, & Scannella, 2019) that can be prevented with the help of cogni-

tive assistance, for example in the form of verbal reminders (Estes et al., 2016). Causes

and consequences of overheard messages for individual pilots’ performance need to be

considered to identify what is the right information to be provided and when is the right

time to provide it for cognitive assistance in operations.

Causes can be diverse and situation-dependent (e.g., perceptual/attentional factors, see

Dehais, Roy, et al., 2019) and are likely too complex for deterministic modeling of single

occurrences of missed alerts. Often, alerts are declared as missed when pilots fail to react.

Knowing what made a pilot fail to react or what pieces of information he or she was

unable to process gives diagnostic value and helps to identify adequate means of support.

For cognitive assistance in handling flight deck alerts, information about the contents of a

message and whether the message was adequately processed by the pilot is a viable alter-

native to complex models required for deterministic prediction of user states.

Just as intelligent training systems (Fu et al., 2006), cognitive assistance on the flight

deck can be designed in reference to models based on a cognitive architecture. Conse-

quences of an overheard or ignored message for pilots’ performance can be anticipated

with the help of a cognitive pilot model. ACT-R (Anderson et al., 2004) is a comprehen-

sive and scientifically substantiated cognitive architecture that has produced models repre-

senting processes, for example, involved in “manual” flight control of single engine

aircraft (Somers & West, 2013), visual attention allocation in a glass cockpit (Byrne

et al., 2004), and the use of and skill acquisition for the flight management system

(Schoppek & Boehm-Davis, 2004; Taatgen, Huss, & Anderson, 2008). For model-based

assistance, such formal descriptions of flight-related tasks and processes can describe

what constitutes normative performance.

1.4. Neuroadaptive cognitive modeling

In the present paper, a modeling concept is proposed that is able to explain uncertainty

in single instances of missed alerts by representing individual pilots’ behavior. In the

fashion of Putze et al. (2015), we extend the idea of model-tracing (Fu et al., 2006) by

incorporating physiological data. Whereas Putze et al. (2015) integrate physiological data

to model architectural differences, that is, occupying cognitive resources with a dummy
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model to model workload, the concept in this paper focuses on modeling knowledge dif-

ferences (Taatgen, 1999) due to unprocessed auditory messages.

Model-tracing based on monitoring pilot interactions with flight deck instruments

enables the model to identify when performance deviates from normative behavior. Based

on such deviations, the model can make inferences about the pilot’s cognitive states. By

treating instances of deviating behavior as unexplainable situations due to lack of knowl-

edge, the model consults external sources of information, that is, event-related physiologi-

cal data of the pilot whose cognitive processes it tries to represent.

Physiological measurements, for example electroencephalogram (EEG), can provide

information about cognitive operations. With a passive brain–computer interface (Zander

& Kothe, 2011), EEG can be recorded without interfering with the task and data can be

processed in (almost) real time. The integration of these data into the model allows for

more refined representations of individual pilots. Such a neuroadaptive (Zander, Krol,

Birbaumer, & Gramann, 2016) cognitive model would be able to adjust its generic or

normative behavior to measurements of a pilot’s current cognitive state and to identify

individual current needs for assistance.

Physiological measures can be subject to errors that introduce intrinsic or aleatory

uncertainty (Kiureghian & Ditlevsen, 2009). Whereas epistemic uncertainty represents

defined model boundaries, aleatory uncertainty is hard to identify in single situations

where there is no ground truth available. That is, the model is able to identify instances

of deviating pilot behavior, but it cannot say which of the physiological data are affected

by measurement or classification error and which are not. In model-based cognitive assis-

tance, thoughtful handling of the two types of uncertainty is required (see Fig. 1 for an

overview of type of uncertainty introduced by data source).

The objective of this study is to increase the effectiveness of modeling individual pilot

behavior in response to flight deck alerts. To this end, model-tracing and EEG recordings

are used to reduce uncertainty due to individual differences. Behavioral data from an

empirical study on the neurophysiological reaction to auditory signals in simulated flight

Fig. 1. Sources of uncertainty in neuroadaptive concept.
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(Krol et al., 2018) are modeled to demonstrate how the proposed concept can be imple-

mented. Accuracies of a neuroadaptive cognitive pilot model and normative model are

compared to quantify the fraction of uncertainty reduced by inserting pilots’ EEG data.

Epistemic and aleatory uncertainty are quantified and examined regarding their implica-

tions for model-based cognitive assistance in flight operations.

2. Methods

2.1. Empirical study

In all, 21 air crew (one female) who were predominantly military pilots participated in

the empirical flight simulator study. Participants had a mean age of 49.08 years

(SD = 6.08) and an average experience of 3,230 h of flight (SD = 2,330.71). All partici-

pating air crew had normal or corrected-to-normal vision, and all but two were right-

handed. Air crew were seated in a fixed base experimental flight simulator in a single

pilot setup that approximated Airbus A320 cockpit design. Participants were asked to per-

form an 18 min scenario that consisted of 9–14 events resembling flight deck alerts per

participant, each preceded by auditory warnings or air traffic control (ATC) messages.

The scenario had to be flown by selecting heading and altitude on the auto flight system

according to ATC instructions. In addition, participants were asked to manage thrust man-

ually and attend to alerts. Alerts included in the scenario could have low (“amber alert,”

e.g., fuel pump failure) or high priority (“red alert,” e.g., engine fire), and ATC messages

contained navigation or speed instructions. Speed warnings were issued dynamically

whenever participants left a speed range, which resulted in different numbers of acoustic

events per participant. For building and simulating the scenario, the open-source flight

simulation software “FlightGear 3.4” (http://home.flightgear.org/) was used. Essential

instrument properties and state changes in the scenario were recorded in log files with a

sampling rate of 20 Hz.

Before the flight scenario, participants’ EEG was recorded while performing an audi-

tory oddball paradigm (frequent versus rare sounds). A classification algorithm was

trained on the EEG data to recognize activity patterns for processing of target (i.e., pro-

cessed alerts) and standard sounds (missed alerts). The algorithm was tuned to have equal

chances for false alarms and misses in case of incorrect response classification. Due to

the frequent use of standard compared to rare target sounds in the training paradigm, clas-

sifier accuracy needs to be higher than 0.78 to perform significantly better than chance.

EEG was recorded during classifier training and scenario with a 32-channel BrainProducts

LiveAmp system.

2.2. Cognitive modeling

A cognitive model was created to represent individual pilots’ behavior using the cogni-

tive architecture ACT-R version 7.14. ACT-R consists of memory, perceptual, and motor
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modules that interact with each other by exchanging chunks of information through buf-

fers. The declarative memory module can hold and store information about the task state,

whereas procedural memory allows for modeling productions (condition–action–state-
ments) that apply depending on the state of the task or the environment. Perceptual and

motor modules allow for modeling of basic sensory processes and enable a model to

interact with the environment. When modeling pilot activities, the respective modules can

be used to represent storing and updating flight information such as altitude and speed,

procedures for how to react in case of alerts, and auditory and visual perception of mes-

sages in the cockpit.

For assistance in operations, a cognitive pilot model needs to be flexible, adaptive at

runtime, and knowledgeable of the operational context. Not only does it need to know

what constitutes optimal or normative performance of a task but also alternative means to

meet the objective. In case of deviations from normative performance, it has to be able to

adapt its functionality and adjust its representation of the pilot. Finally, the model needs

to be able to anticipate the consequences of both normative and alternative performance

in a task so it can offer support when needed.

A scenario-specific hierarchical task analysis (HTA; Stanton, 2006) was conducted for

identifying seven main tasks of which one routine and six alert specific tasks. Main tasks

were then split up iteratively until the lowest level of actions that can be observed in sim-

ulator log files. Based on this HTA, an ACT-R cognitive model was created that was able

to memorize flight information by reading airspeed and altitude data, decide when to

adjust the throttle, process and respond to auditory messages, and check if its own actions

match pilot’s actual behavior. This model will be referred to as the “normative” model.

A Python implementation of the extended version of ACT-CV (Halbr€ugge, 2013) was

used to create an interface between the cognitive architecture and FlightGear log files.

While ACT-CV allows real-time interaction between cognitive models and the outer world,

the possibility of fast-time simulation was considered more important in the given scenario.

Therefore, ACT-R did not interface with FlightGear directly (see Somers & West, 2013),

but through recordings of individual participants’ performance The graphical interface of

the flight simulator was presented textually in the visicon, that is, ACT-R’s visual represen-

tation of the environment. As an accurate representation of pilots’ visual behavior was

beyond the scope and focus of this study, different parameters (e.g., airspeed, altitude, etc.)

were presented at predefined locations independent of Airbus cockpit design.

Parameter changes linked to events (e.g., engine1-on-fire from “0” to “1”) triggered

sounds in the audicon, that is, ACT-R’s acoustic scene, so messages from the cockpit

were presented in the same modalities as in the empirical study. A processed EEG data

were displayed as event-related Boolean variable (“1” for alerts processed as target

sound, “0” for standard sounds). Alert procedures in the form of checklists as well as

contents of ATC messages in the controller-pilot datalink communications could not be

communicated through FlightGear. As a workaround, an extra buffer was added that

gives the model access to information not displayed in the visicon. Checklist and ATC

information was therefore defined as chunks in declarative memory containing informa-

tion, for example, about the event name (e.g., “engine-fire”), the current action to perform
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in terms of button or dial (e.g., “engine-cutoff”) and the value to be set (e.g., “true”), and

the next step on the checklist (e.g., “fire-bottle-discharge,” “true”). Modeling the reading-

or listening-intensive processes of following checklists or processing ATC information is

beyond the scope of this model. The additional retrieval buffer allowed the model to

access the information without occupying other buffers. The Python module included in

ACT-R version 7.14 was used for interfacing with ACT-CV, running the model, and stor-

ing results.

2.2.1. Normative model
For the routine task (see Fig. 2), the model monitors variables of airspeed and altitude

that were shown in the simulator’s primary flight display. In alternating order, the model

updates its internal representation of the flight information that is stored as declarative

Fig. 2. Routine loop in both models.
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knowledge in the imaginal buffer. When updating its information on altitude and speed,

the model also computes trends for speed and altitude in “decreasing” or “increasing” by

comparing the most recent values in the imaginal buffer to the new value in the visual

buffer. If the model notices that airspeed deviates from target speed and altitude, and if

the speed-trend suggests this deviation will grow larger, the model adjusts the thrust

accordingly. Utilities of thrust manipulation productions are set to an increased value to

ensure they are selected over passive monitoring productions. If no adjustment of thrust

is required, the model returns to monitoring speed or altitude after updating its flight

information.

In case of auditory signals, the normative model temporarily exits this routine loop,

processes the sound, and shifts visual attention to read the corresponding warning mes-

sage or event-name. In case of ATC messages, the model retrieves the chunk correspond-

ing to the event-name, processes navigational instructions in the chunk (e.g., “heading-

select,” “180”), and stores them in the imaginal buffer. If the model hears an alert, it

retrieves a checklist corresponding to the specific alert and puts the action required from

the pilot in the imaginal buffer. For all acoustic events, the normative model assumes that

pilots correctly process the information and will respond adequately. After each event, it

checks the log data for the required pilot response to evaluate if its assumption is correct.

Situations where pilots do not respond adequately are treated as epistemic uncertainty

and marked as cases when some sort of assistance should be provided or communication

from the pilot to the model are needed for more accurate state classification.

2.2.2. Neuroadaptive model
The neuroadaptive model forms an extension of the normative model. It follows the

same courses of action for routine tasks and acoustic events that were followed by an ade-

quate pilot response. In cases of epistemic uncertainty when no adequate response is

observed, the neuroadaptive model emulates information search behavior and consults the

EEG data to check if the pilot had paid attention to the sound (see Fig. 3). If EEG data

show the pilot has processed the alert or message like a standard instead of a target stimu-

lus, the neuroadaptive model updates its description of the situation to a missed alert. The

model considers these cases as situations that require verbal reminders of the alert or mes-

sage. Situations where no adequate response was observed but EEG data show the preced-

ing sound was processed correctly are treated as epistemic uncertainty. For these situations,

the model knows that assistance of some form other than a verbal reminder is needed.

2.3. Analysis

After each acoustic event, the first reaction to the auditory events was evaluated, for

example adjusting the selected altitude in response to ATC messages. Adequacy and

timeliness of responses were scored according to criteria assessed in the HTA with sub-

ject matter experts. While adequacy of responses depended on the type of alert or con-

tents of ATC messages, the time limit for initiating a first reaction to an alert was set to

25 s for all events. For example, if an ATC message requested a flight level change to
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300, entering an altitude-select of 300 in the flight control unit within a time window of

25 s was scored as good performance; all other responses such as entering an altitude-se-

lect of 280 or entering the correct altitude-select after 25 s were classified as missed

ATC message. In both models, epistemic uncertainty was scored as incorrect description

of pilot behavior. Both the normative and the neuroadaptive model could correctly

describe situations with adequate pilot reactions to acoustic events; in addition, the neu-

roadaptive model was able to classify lacking responses as correct descriptions when

EEG data showed that the sound was not processed adequately.

Correctly described responses are scored with 1, incorrect response descriptions with 0.

For each participant, both models divide the sum of correct descriptions by the total num-

ber of alerts and ATC messages to quantify model accuracy. For both models, mean

accuracy is computed across pilots. As the number of auditory events was not the same

Fig. 3. Alert procedure for neuroadaptive model.
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for all participants due to ATC speed messages, median and interquartile range had to be

used as measures of central tendency and dispersion. A Wilcoxon signed rank test for

pairwise comparisons was used to quantify the added value of EEG data for the neuroad-

aptive model.

Aleatory uncertainty in the neuroadaptive model is equal to one minus EEG classifier

accuracy. As the data give no information about which situations are concerned by classi-

fier inaccuracies, the model emulates exploitation behavior by accepting aleatory uncer-

tainty of the EEG classifier and relying on its classification given that its accuracy is

above chance. Added value of neuroadaptivity to the normative model was quantified by

subtracting normative from neuroadaptive model accuracy. By multiplying added value

with EEG classifier accuracy, a mean accuracy of the neuroadaptive model corrected for

aleatory uncertainty was computed. Chi-square tests were used to test for relationships

between event types and model classification. To this end, events were grouped into cate-

gories “ATC messages,” “Fuel pump failure,” “Fire alert,” and “Speed warnings.” For the

subset of missed alerts, a chi-square test was performed to test for a possible relationship

between the type of responses failure (i.e., incorrect response or no response at all) and

EEG classifier output (alert processed or not). Where required, graphs are shown to pro-

vide information about possible interaction effects in the data that could not be explored

by the non-parametric tests used in the analysis. Starting from a level of significance of

0.05, all tests are conducted at an alpha corrected for the number of tests using Bonfer-

roni’s method of a’ = 0.05/3 � 0.02.

3. Results

In total, behavior descriptions for 226 events were generated by each model for all

pilots with an average of 10.8 (SD = 0.9) per pilot. The normative model correctly

Fig. 4. Median accuracy per model.
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described participant’s behavior for 165 of these events (AccNorm. = 0.73) with a median

model accuracy of MDNNorm. = 0.73 (IQR = 0.80–0.67; Fig. 4). Thus, the total amount

of uncertainty treated as epistemic is uEpistemic = 0.27.

The neuroadaptive cognitive model generated correct descriptions in 213 of 226 cases

(AccNeuro. = 0.94) with a median accuracy of MdnNeuro. = 0.92 (IQR = 1.0–0.9; Fig. 4).
The uncertainty treated as epistemic is therefore uEpistemic = 0.06.

The signed rank test showed that neuroadaptive model accuracy is significantly higher

compared to the normative model (z = �4.01, p < .001). Added value of the EEG data is

0.21. Correcting the added value for the EEG classifier accuracy of 0.86 resulted in a cor-

rected accuracy of the neuroadaptive model of AccNeuro.’ = 0.91 and aleatory uncertainty

of uAleatory = 0.03. Model accuracies per participant and model are shown in Fig. 5.

According to the chi-square test, there was no significant effect of the type of event on

the mean accuracy across participants and model types (v2(3, N = 226) = 0.25, p = .97).

Fig. 6 shows the fractions of correct model classifications per event type and model.

The relationship between the type of failed response (incorrect or no response) and the

EEG classifier output (processed/not processed) was marginally significant (v2(1,
N = 61) = 1.04, p = .05), but not significant according to the Bonferroni-corrected a’.
This suggests that the EEG data are not indicative of participants responding incorrectly

or not at all to an alert or message. The distribution of alert types per classifier output is

shown in Fig. 7.

Fig. 5. Mean accuracy per participant and model.
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4. Discussion

The presented concept and its application demonstrate how pilot performance can be

modeled in spite of individual differences using model-tracing and physiological data. The

distinction between aleatory and epistemic uncertainty (Kiureghian & Ditlevsen, 2009) and

their quantification was decisive for the neuroadaptive model’s design and implementation.

Data show how model accuracy can be significantly increased by connecting model-tracing

and EEG data in line. The specification of remaining fractions of epistemic and aleatory

uncertainty provides starting points for further improvement of the concept.

Fig. 6. Mean accuracy per alert type and model. For testing for a relationship between alert types and the

model accuracies, events were grouped into the following alert types: ATC messages = “ATC,” fuel pump

alert = “Fuel,” engine fire alert = “Fire,” speed warnings = “Speed.”

Fig. 7. Frequencies of false response types by classifier output from the subset of missed alerts.
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Whereas flight deck instrument interactions can be observed directly, unprocessed

alerts can only be detected by behavioral or physiological symptoms. Due to aleatory

uncertainty introduced by the EEG classifier, model-tracing with instrument and EEG

data had to be connected in line to maximize the effectiveness in reducing epistemic

uncertainty. Compared to other studies using EEG data to model effects of individual dif-

ferences, the integration of EEG data was quite straightforward for the neuroadaptive

model and did not require a dual model approach (Putze et al., 2015). Model-tracing

based on the log files proved effective in detecting deviations from normative behavior

due to an increased density of acoustic events in the scenario. Real flight, however, con-

tains long periods of monitoring instruments without direct input required. Deriving men-

tal states based on model-tracing (Fu et al., 2006) in such highly automated or

autonomous environments could therefore require other pilot behavior data sources, for

example unobtrusive monitoring of neurophysiological activity, speech, or gaze. Cogni-

tive models are well suited for the interpretation of such data by linking physiological

phenomena to context.

Apart from measurement and classification errors, the neuroadaptive model was able to

explain ~78% of the normative model’s epistemic uncertainty, leaving a total of 6% of

cases when the model does not know what made participants fail to react adequately.

These data suggest that cognitive assistance in the form of verbal reminders would suffice

to help with performance recovery in all other situations lacking responses from partici-

pants.

Normative model accuracy represents the effects of individual differences on perfor-

mance given the scenario. By design, the neuroadaptive model improves on the normative

model; the significance of improvement with the EEG data is moderated by the effect of

individual differences. Nonetheless, increased accuracy of the neuroadaptive model shows

how epistemic uncertainty can be reduced with the help of physiological data. For an

empirical evaluation of the concept, a comparison with alternative designs for model-

based assistance is required. For example, a Wizard-of-Oz setup with a human co-pilot

interpreting pilot behavior could be used to compare the neuroadaptive model’s accuracy

in classification of pilots’ cognitive states to that of human co-pilots.

The neuroadaptive model tracks pilots’ perception of auditory events. The fact that a

piece of information has been perceived and processed by a pilot does not mean that it

has been understood. Measures of pilots’ situation assessment and awareness (Endsley,

1995) may help to reduce epistemic uncertainty about why a pilot may fail to respond

adequately. Physiological symptoms of cognitive conflict, for example in the anterior cin-

gulate cortex (Anderson, Anderson, Ferris, Fincham, & Jung, 2009), could be used to

identify when information that was perceived could not be comprehended by the pilot. In

addition, the combination of such measures with behavioral data might not only help to

identify such conflicts, but it can also provide diagnostic information on what interfering

goals may have caused the conflict. Based on such information, cognitive assistance could

help pilots to build up or activate more useful mental representations in situations of cog-

nitive conflict, for example in response to automation surprises (Sarter, Woods, & Bill-

ings, 1997).
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Mean accuracy of the neuroadaptive model corrected for aleatory uncertainty is 91%.

Aleatory uncertainty may be reduced with other independent physiological measures, for

example eye tracking. EEG classification could be supported with corresponding gaze

data by connecting both methods in line. For example, when the EEG data show that a

pilot has processed an alert, saccades to the warning display after the alert can reduce the

uncertainty by eye tracking classification accuracy. This linear approach can enable cog-

nitive assistance to make Bayesian inferences about individual pilots’ cognitive states

based on conditional probabilities of cognitive processes or actions given the physiologi-

cal and other behavioral data.

Further research is required on how to model individual differences in behavior with

the help of behavioral and physiological measures. As the objective of our model was to

represent the pilot’s current state of knowledge about a given situation, individual differ-

ences were modeled as knowledge differences by withholding information depending on

EEG data. More comprehensive approaches that, for example, integrate measures of

pilots’ resource availability (e.g., Dehais, Rida, et al., 2019) might be able to anticipate

missed alerts and to model pilots’ differences in knowledge about a situation as a func-

tion of their architectural differences (Taatgen, 1999). Albeit being more complex, such

modeling of architectural differences could provide diagnostic information and thereby

explain why certain messages were not processed correctly in a complex task.

No effect of the type of event on the models’ accuracies was found. Fig. 6 does not

show signs of an interaction effect between the types of events and models, which sug-

gests that the different event types neither affected the chance of responding correctly

(i.e., the normative model results) nor the EEG classifier output (i.e., as integrated by the

neuroadaptive model). This is unexpected as the events differ substantially in their sal-

ience and associated criticality. Due to the study’s limitations, for example regarding the

simulator setting, density of events in the scenario, and potential observer effects, this

finding may not generalize well to other experimental setups, not to mention real-world

scenarios.

The integration of EEG data in the cognitive model could not provide clear informa-

tion about whether participants responded incorrectly or whether they do not respond at

all, which suggests that the EEG classifier was sensitive to missed and incorrectly pro-

cessed alerts alike. However, results of the test for a relationship between type of failed

response and EEG classifier output approached significance and the difference between

distributions might become clearer with larger sample sizes. Fig. 7 indicates a larger frac-

tion of incorrect responses for alerts that were classified as incorrectly processed based

on the EEG data, while failed alert types are more evenly distributed for correctly pro-

cessed sounds. In reality, the distinction between missed and incorrectly processed alerts

might be more gradual than suggested by the analysis in this study. In-depth analyses of

neurophysiological measures can give insights into what processing stages a stimulus or

piece of information passes through on a single-trial basis (e.g., perceptual, dorsal or ven-

tral auditory pathway, etc.). Alternatively, the imbalance of incorrect and no responses in

missed alerts could be explained by strategies of coping with uncertainty: If uncertainty

about the contents of incorrectly processed messages was considered being aleatory,
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participants may have been more likely to take a gamble and provide some response

rather than none (Fox & €Ulk€umen, 2011). Further research is required to understand and

model in what cases pilots respond incorrectly or not at all after incorrectly processed

alerts.

As a first step toward pilot action anticipation for cognitive assistance, the modeling

concept took inspiration from fundamental abilities of (a) sharing representations and (b)

predicting actions described by Sebanz et al. (2006). (a) Following up with perceptual

processes of the operator can allow for inferences about the pilot’s representation of the

situation. Similar to anticipation in human–human interactions, being receptive to emo-

tional or overt physiological reactions can help in validating assumed representations. (b)

Recognizing and understanding an individual’s actions at a given moment is a necessary

but not a sufficient condition for successful cooperation and joint action. Rather, the abil-

ity to predict outcomes of an individual’s actions and knowing what actions will likely

follow enables the coordination of efforts. For example, tracing the perceived amount of

uncertainty or confidence in operators’ representation of a situation can help anticipating

the timing of their actions (e.g., Scharfe & Russwinkel, 2019).

The study described in the paper has given an example of how model-based assistance

in human machine interaction can provide machines with an implicit feedback loop that

allows for checking if the information they provide is perceived by the operator. Building

on cognitive models that integrate physiological data about operators’ states, future

research should aim at tracing operators understanding of a situation in the form of men-

tal representations in operations. Ideally, this will enable machines to form a more refined

model of their users, to share their representations, and to anticipate their behavior in

much the same way that humans learn to interact and cooperate with humans.
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